Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 133(4): 559-572, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38324309

RESUMO

BACKGROUND AND AIMS: The formation of multifunctional vascular tissues represents a significant advancement in plant evolution. Differentiation of conductive cells is specific, involving two main pathways, namely protoplast clearance and cell wall modification. In xylogenesis, autophagy is a crucial process for complete protoplast elimination in tracheary elements, whose cell wall also undergoes strong changes. Knowledge pertaining to living sieve elements, which lose most of their protoplast during phloemogenesis, remains limited. We hypothesized that autophagy plays a crucial role, not only in complete cytoplasmic clearance in xylem but also in partial degradation in phloem. Cell wall elaborations of mature sieve elements are not so extensive. These analyses performed on evolutionarily diverse model species potentially make it possible to understand phloemogenesis to an equal extent to xylogenesis. METHODS: We investigated the distribution of ATG8 protein, which is an autophagy marker, and cell wall components in the roots of ferns, gymnosperms and angiosperms (monocots, dicot herbaceous plants and trees). Furthermore, we conducted a bioinformatic analysis of complete data on ATG8 isoforms for Ceratopteris richardii. KEY RESULTS: The presence of ATG8 protein was confirmed in both tracheary elements and sieve elements; however, the composition of cell wall components varied considerably among vascular tissues in the selected plants. Arabinogalactan proteins and ß-1,4-galactan were detected in the roots of all studied species, suggesting their potential importance in phloem formation or function. In contrast, no evolutionary pattern was observed for xyloglucan, arabinan or homogalacturonan. CONCLUSIONS: Our findings indicate that the involvement of autophagy in plants is universal during the development of tracheary elements that are dead at maturity and sieve elements that remain alive. Given the conserved nature of autophagy and its function in protoplast degradation for uninterrupted flow, autophagy might have played a vital role in the development of increasingly complex biological organizations, including the formation of vascular tissues. However, different cell wall compositions of xylem and phloem in different species might indicate diverse functionality and potential for substance transport, which is crucial in plant evolution.


Assuntos
Autofagia , Evolução Biológica , Parede Celular , Xilema , Parede Celular/metabolismo , Autofagia/fisiologia , Xilema/fisiologia , Cycadopsida/fisiologia , Floema , Proteínas de Plantas/metabolismo , Magnoliopsida/fisiologia , Gleiquênias/fisiologia , Gleiquênias/citologia
2.
Stem Cells ; 41(9): 850-861, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37357747

RESUMO

Revolutionary advances in AI and deep learning in recent years have resulted in an upsurge of papers exploring applications within the biomedical field. Within stem cell research, promising results have been reported from analyses of microscopy images to, that is, distinguish between pluripotent stem cells and differentiated cell types derived from stem cells. In this work, we investigated the possibility of using a deep learning model to predict the differentiation stage of pluripotent stem cells undergoing differentiation toward hepatocytes, based on morphological features of cell cultures. We were able to achieve close to perfect classification of images from early and late time points during differentiation, and this aligned very well with the experimental validation of cell identity and function. Our results suggest that deep learning models can distinguish between different cell morphologies, and provide alternative means of semi-automated functional characterization of stem cell cultures.


Assuntos
Inteligência Artificial , Células-Tronco Pluripotentes , Humanos , Diferenciação Celular , Hepatócitos/metabolismo , Técnicas de Cultura de Células/métodos
3.
Toxins (Basel) ; 13(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34822522

RESUMO

Fusarium head blight (FHB) is one of the most serious diseases of small-grain cereals worldwide, resulting in yield reduction and an accumulation of the mycotoxin deoxynivalenol (DON) in grain. Weather conditions are known to have a significant effect on the ability of fusaria to infect cereals and produce toxins. In the past 10 years, severe outbreaks of FHB, and grain DON contamination exceeding the EU health safety limits, have occurred in countries in the Baltic Sea region. In this study, extensive data from field trials in Sweden, Poland and Lithuania were analysed to identify the most crucial weather variables for the ability of Fusarium to produce DON. Models were developed for the prediction of DON contamination levels in harvested grain exceeding 200 µg kg-1 for oats, spring barley and spring wheat in Sweden and winter wheat in Poland, and 1250 µg kg-1 for spring wheat in Lithuania. These models were able to predict high DON levels with an accuracy of 70-81%. Relative humidity (RH) and precipitation (PREC) were identified as the weather factors with the greatest influence on DON accumulation in grain, with high RH and PREC around flowering and later in grain development and ripening correlated with high DON levels. High temperatures during grain development and senescence reduced the risk of DON accumulation. The performance of the models, based only on weather variables, was relatively accurate. In future studies, it might be of interest to determine whether inclusion of variables such as pre-crop, agronomic factors and crop resistance to FHB could further improve the performance of the models.


Assuntos
Avena/química , Grão Comestível/química , Contaminação de Alimentos/análise , Hordeum/química , Tricotecenos/análise , Triticum/química , Tempo (Meteorologia) , Avena/microbiologia , Países Bálticos , Grão Comestível/microbiologia , Hordeum/microbiologia , Lituânia , Modelos Teóricos , Polônia , Estações do Ano , Suécia , Tricotecenos/química , Triticum/microbiologia
4.
Antioxidants (Basel) ; 9(3)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120843

RESUMO

In contrast to aboveground organs (stems and leaves), developmental events and their regulation in underground organs, such as pioneer and fine roots, are quite poorly understood. The objective of the current study was to achieve a better understanding of the physiological and molecular role of reactive oxygen species (ROS) and ROS-related enzymes in the process of stem and pioneer root development in black cottonwood (Populus trichocarpa), as well as in the senescence of leaves and fine roots. Results of a transcriptomic analysis revealed that primary/secondary growth and senescence are accompanied by substantial changes in the expression of genes related to oxidative stress metabolism. We observed that some mechanisms common for above- and under-ground organs, e.g., the expression of superoxide dismutase (SOD) genes and SOD activity, declined during stems' and pioneer roots' development. Moreover, the localization of hydrogen peroxide (H2O2) and superoxide (O2•-) in the primary and secondary xylem of stems and pioneer roots confirms their involvement in xylem cell wall lignification and the induction of programmed cell death (PCD). H2O2 and O2•- in senescing fine roots were present in the same locations as demonstrated previously for ATG8 (AuTophaGy-related) proteins, implying their participation in cell degradation during senescence, while O2•- in older leaves was also localized similarly to ATG8 in chloroplasts, suggesting their role in chlorophagy. ROS and ROS-related enzymes play an integral role in the lignification of xylem cell walls in Populus trichocarpa, as well as the induction of PCD during xylogenesis and senescence.

5.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192046

RESUMO

Plant senescence is a highly regulated process that allows nutrients to be mobilized from dying tissues to other organs. Despite that senescence has been extensively studied in leaves, the senescence of ephemeral organs located underground is still poorly understood, especially in the context of phytohormone engagement. The present study focused on filling this knowledge gap by examining the roles of abscisic acid (ABA) and jasmonate in the regulation of senescence of fine, absorptive roots and leaves of Populus trichocarpa. Immunohistochemical (IHC), chromatographic, and molecular methods were utilized to achieve this objective. A transcriptomic analysis identified significant changes in gene expression that were associated with the metabolism and signal transduction of phytohormones, especially ABA and jasmonate. The increased level of these phytohormones during senescence was detected in both organs and was confirmed by IHC. Based on the obtained data, we suggest that phytohormonal regulation of senescence in roots and leaves is organ-specific. We have shown that the regulation of ABA and JA metabolism is tightly regulated during senescence processes in both leaves and roots. The results were discussed with respect to the role of ABA in cold tolerance and the role of JA in resistance to pathogens.


Assuntos
Ácido Abscísico/metabolismo , Envelhecimento/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Populus/metabolismo , Envelhecimento/genética , Biologia Computacional/métodos , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Anotação de Sequência Molecular , Fenótipo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Raízes de Plantas/genética , Populus/genética
6.
Tree Physiol ; 40(8): 987-1000, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32091108

RESUMO

The remobilization and resorption of plant nutrients is considered as a crucial aspect of the seasonal senescence of plant organs. In leaves, the mechanisms responsible for the relocation of valuable compounds are well understood while the related processes in roots are still being debated. Some research indicates that remobilization in roots occurs, while other studies have not found evidence of this process. Considering that the total biomass of fine roots is equal to or greater than that of leaves, clarifying the conflicting reports and ambiguities may provide critical information on the circulation of chemical elements in forest ecosystems. This study provides new information concerning the basis for remobilization processes in roots by combining physiological data with gene expression and protein levels. We suggest that, as in leaves, molecular mechanisms involved in nitrogen (N) resorption are also activated in senescent roots. An analysis of N concentration indicated that N levels decreased during the senescence of both organs. The decrease was associated with an increase in the expression of a glutamine synthetase (GS) gene and a concomitant elevation in the amount of GS-one of the most important enzymes in N metabolism. In addition, significant accumulation of carbohydrates was observed in fine roots, which may represent an adaptation to unfavorable weather conditions that would allow remobilization to occur rather than a rapid death in response to ground frost or cold. Our results provide new insights into the senescence of plant organs and clarify contentious topics related to the remobilization process in fine roots.


Assuntos
Populus/genética , Ecossistema , Nitrogênio , Folhas de Planta , Raízes de Plantas , Estações do Ano
7.
Pathogens ; 9(12)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419297

RESUMO

Clubroot is a damaging disease of oilseed rape and vegetable brassicas worldwide, caused by the soil-borne protist Plasmodiophora brassicae Wor. Due to the long life of resting spores, the assessment of the pathogen abundance in agricultural fields can serve as a guideline for disease control at the country-wide level or the regional scale. Between 2013 and 2019, we collected 431 soil samples from fields cultivated with Brassicaceae crops throughout 16 provinces of Poland. The samples were subjected to qPCR based analysis of P. brassicae DNA concentration. From these data, the spore loads and gene copies g-1 soil were calculated and used to produce an assessment of the current clubroot risk potential at a country-wide and regional scale. The country-wide map, showing the spread of the pathogen in agricultural soils, was made using ArcGis software package implementing the interpolation with the Inverse Distance Weight method. The calculation of gene copies specific to P. brassicae helped to formulate the recommendations for farmers in respect to the cultivation guidelines. It showed a high risk of yield losses in defined regions of north, south-west and central Poland and an urgent need to undertake intensive preventative measures.

8.
Front Plant Sci ; 10: 1419, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781142

RESUMO

Regulation of gene expression, as determined by the genetics of the tree species, is a major factor in determining wood quality. Therefore, the identification of genes that play a role in xylogenesis is extremely important for understanding the mechanisms shaping the plant phenotype. Efforts to develop new varieties characterized by higher yield and better wood quality will greatly benefit from recognizing and understanding the complex transcriptional network underlying wood development. The present study provides a detailed comparative description of the changes that occur in genes transcription and the biosynthesis of cell-wall-related compounds during xylogenesis in Populus trichocarpa pioneer roots and stems. Even though results of microarray analysis indicated that only approximately 10% of the differentially expressed genes were common to both organs, many fundamental mechanisms were similar; e.g. the pattern of expression of genes involved in the biosynthesis of cell wall proteins, polysaccharides, and lignins. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) shows that the composition of monosaccharides was also very similar, with an increasing amount of xylose building secondary cell wall hemicellulose and pectins, especially in the stems. While hemicellulose degradation was typical for stems, possibly due to the intensive level of cell wall lignification. Notably, the main component of lignins in roots were guiacyl units, while syringyl units were dominant in stems, where fibers are especially needed for support. Our study is the first comprehensive analysis, at the structural and molecular level, of xylogenesis in under- and aboveground tree parts, and clearly reveals the great complexity of molecular mechanisms underlying cell wall formation and modification during xylogenesis in different plant organs.

9.
Planta ; 250(6): 1789-1801, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31451904

RESUMO

MAIN CONCLUSION: Autophagy is involved in developmentally programmed cell death and is identified during the early development of phloem, as well as xylem with a dual role, as both an inducer and executioner of cell death. The regulation of primary and secondary development of roots and stems is important for the establishment of root systems and for the overall survival of trees. The molecular and cellular basis of the autophagic processes, which are used at distinct moments during the growth of both organs, is crucial to understand the regulation of their development. To address this, we use Populus trichocarpa seedlings grown in a rhizotron system to examine the autophagy processes involved in root and stem development. To monitor the visual aspects of autophagy, transmission electron microscopy (TEM) and immunolocalization of AuTophaGy-related protein (ATG8) enabled observations of the phenomenon at a structural level. To gain further insight into the autophagy process at the protein and molecular level, we evaluated the expression of ATG gene transcripts and ATG protein levels. Alternations in the expression level of specific ATG genes and localization of ATG8 proteins were observed during the course of root or stem primary and secondary development. Specifically, ATG8 was present in the cells exhibiting autophagy, during the differentiation and early development of xylem and phloem tissues, including both xylary and extraxylary fibers. Ultrastructural observations revealed tonoplast invagination with the formation of autophagic-like bodies. Additionally, the accumulation of autophagosomes was identifiable during the differentiation of xylem in both organs, long before the commencement of cell death. Taken together, these results provide evidence in support of the dual role of autophagy in developmental PCD. A specific role of the controller of cell death, which is a committed step with the release of hydrolytic enzymes from the vacuole and final digestion of protoplast, from which there is no return once initiated, is only attributed to mega-autophagy.


Assuntos
Autofagia/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Eletroforese em Gel Bidimensional , Imunofluorescência , Expressão Gênica , Microscopia Eletrônica de Transmissão , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Populus/metabolismo , Populus/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Plântula/crescimento & desenvolvimento
10.
BMC Plant Biol ; 18(1): 260, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373512

RESUMO

BACKGROUND: Senescence, despite its destructive character, is a process that is precisely-regulated. The control of senescence is required to achieve remobilization of resources, a principle aspect of senescence. Remobilization allows plants to recapture valuable resources that would otherwise be lost to the environment with the senescing organ. Autophagy is one of the critical processes that is switched on during senescence. This evolutionarily conserved process plays dual, antagonistic roles. On the one hand, it counteracts instantaneous cell death and allows the process of remobilization to be set in motion, while on the other hand, it participates in the degradation of cellular components. Autophagy has been demonstrated to occur in many plant species during the senescence of leaves and flower petals. Little is known, however, about the senescence process in other ephemeral organs, such as fine roots, whose lifespan is also relatively short. We hypothesized that, like the case of seasonal leaf senescence, autophagy also plays a role in the senescence of fine roots, and that both processes are synchronized in their timing. RESULTS: We evaluated which morphological and cytological symptoms are universal or unique in the senescence of fine roots and leaves. The results of our study confirmed that autophagy plays a key role in the senescence of fine roots, and is associated also with the process of cellular components degradation. In both organs, structures related to autophagy were observed, such as autophagic bodies and autophagosomes. The role of autophagy in the senescence of these plant organs was further confirmed by an analysis of ATG gene expression and protein detection. CONCLUSIONS: The present study is the first one to examine molecular mechanisms associated with the senescence of fine roots, and provide evidence that can be used to determine whether senescence of fine roots can be treated as another example of developmentally programmed cell death (dPCD). Our results indicate that there is a strong similarity between the senescence of fine roots and other ephemeral organs, suggesting that this process occurs by the same autophagy-related mechanisms in all plant ephemeral organs.


Assuntos
Autofagia/fisiologia , Folhas de Planta/citologia , Raízes de Plantas/citologia , Populus/citologia , Populus/fisiologia , Sobrevivência Celular , Regulação da Expressão Gênica de Plantas , Células Vegetais/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...