Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Oncogenesis ; 1: e17, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23552734

RESUMO

Breast cancer is a group of clinically, histopathologically and molecularly heterogeneous diseases, with different outcomes and responses to treatment. Triple-negative (TN) breast cancers are defined as tumors that lack the expression of estrogen receptor, progesterone receptor and epidermal growth factor receptor 2. This subgroup accounts for 15% of all types of breast cancer and its prevalence is higher among young African, African-American and Latino women. The hypermethylation of CpG islands (CpGI) is a common epigenetic alteration for suppressing gene expression in breast cancer and has been shown to be a key factor in breast carcinogenesis. In this study we analyzed the hypermethylation of 110 CpGI within 69 cancer-related genes in TN tumors. For the methylation analysis, we used the methyl-specific multiplex-ligation probe amplification assay. We found that the number of methylated CpGI is similar between TN and non-TN tumors, but the methylated genes between the groups are different. The methylation profile of TN tumors is defined by the methylation of five genes (that is, CDKN2B, CD44, MGMT, RB and p73) plus the non-methylation of 11 genes (that is, GSTP1, PMS2, MSH2, MLH1, MSH3, MSH6, DLC1, CACNA1A, CACNA1G, TWIST1 and ID4). We conclude that TN tumors have a specific methylation profile. Our findings give new information for better understanding tumor etiology and encourage future studies on potential drug targets for triple-negative breast tumors, which now lack a specific treatment.

2.
Genet Mol Res ; 7(1): 223-33, 2008 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-18393226

RESUMO

Deletions/duplications in the Duchenne muscular dystrophy (DMD) gene account for 60 to 70% of all alterations. A new technique, multiplex ligation-dependent probe amplification (MLPA), has been described that allows the detection of large genetic rearrangements by simultaneous amplification of up to 45 target sequences. The present article is based on the diagnosis of the first Argentine affected families by the application of MLPA. DNA samples from patients with and without a previous diagnosis were included. MLPA assays were performed according to manufacturer recommendations. Polymerase chain reaction and direct sequencing were performed when a single-exon deletion was detected. Results were analyzed using the Gene Marker v1.6 and Sequencing Analysis v5.2 software. In the samples with a previous diagnosis (as identified by short tandem repeat-polymerase chain reaction analysis), MLPA confirmed in some samples the same deletion and detected in others a larger deleted fragment. This enabled the prediction of the expected male phenotype. One deletion and one duplication were detected in patients without previous diagnosis. In this study, we investigated the applicability of MLPA in our country. Our results showed a 100% confirmation of the deleted fragments detected by short tandem repeat segregation analysis. Moreover, in some cases, the MLPA assay was able to refine the breakpoints involved. In addition, MLPA identified deletions/duplications in samples without previous diagnosis. In comparison to the available diagnosis strategies in Argentina, MLPA is less time-consuming, and spans the complete coding region of DMD. The application of MLPA will improve the genetic diagnosis of DMD/Becker muscular dystrophy in our country.


Assuntos
Duplicação Gênica , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Deleção de Sequência , Argentina , Saúde da Família , Feminino , Rearranjo Gênico , Humanos , Masculino , Técnicas de Amplificação de Ácido Nucleico/métodos , Software
3.
Genet. mol. res. (Online) ; 7(1): 223-233, Jan. 2008. ilus, tab
Artigo em Inglês | LILACS | ID: lil-553789

RESUMO

Deletions/duplications in the Duchenne muscular dystrophy (DMD) gene account for 60 to 70% of all alterations. A new technique, multiplex ligation-dependent probe amplification (MLPA), has been described that allows the detection of large genetic rearrangements by simultaneous amplification of up to 45 target sequences. The present article is based on the diagnosis of the first Argentine affected families by the application of MLPA. DNA samples from patients with and without a previous diagnosis were included. MLPA assays were performed according to manufacturer recommendations. Polymerase chain reaction and direct sequencing were performed when a single-exon deletion was detected. Results were analyzed using the Gene Marker v1.6 and Sequencing Analysis v5.2 software. In the samples with a previous diagnosis (as identified by short tandem repeat-polymerase chain reaction analysis), MLPA confirmed in some samples the same deletion and detected in others a larger deleted fragment. This enabled the prediction of the expected male phenotype. One deletion and one duplication were detected in patients without previous diagnosis. In this study, we investigated the applicability of MLPA in our country. Our results showed a 100% confirmation of the deleted fragments detected by short tandem repeat segregation analysis. Moreover, in some cases, the MLPA assay was able to refine the breakpoints involved. In addition, MLPA identified deletions/duplications in samples without previous diagnosis. In comparison to the available diagnosis strategies in Argentina, MLPA is less time-consuming, and spans the complete coding region of DMD. The application of MLPA will improve the genetic diagnosis of DMD/Becker muscular dystrophy in our country.


Assuntos
Humanos , Masculino , Feminino , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Duplicação Gênica , Deleção de Sequência , Argentina , Saúde da Família , Rearranjo Gênico , Técnicas de Amplificação de Ácido Nucleico , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...