Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(4)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38667402

RESUMO

Factors responsible for species distribution of benthic macroinvertebrates, including responses at different spatial scales, have been previously investigated. The aim of the present research was to review the most relevant factors explaining chironomid species distribution focusing on factors operating at different spatial scales, such as latitude, longitude, altitude, substrate, salinity, water temperature, current velocity, conductivity, acidity, dissolved oxygen, nutrient content etc. acting at regional levels and at a large or small water basin level. Data including chironomid species abundances from different lentic and lotic waters in Italy and other surrounding countries were analyzed using partial canonical correspondence analysis (pCCA) and multiple discriminant analysis (DISCR). Spatial analyses, including univariate Moran's I correlograms, multivariate Mantel correlograms and Moran's eigenvector maps (MEMs), were thereafter carried out. The results showed that habitat type, including different types of lotic waters (i.e., kryal, crenal, rhithral, potamal) and different lake types (i.e., littoral, sublittoral, profundal zones), is the most significant factor separating chironomid assemblages, while spatial factors act only as indirect influencers.

2.
Insects ; 15(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38535344

RESUMO

The Toce River (Northern Italy) is characterized by legacy contamination of dichloro-diphenyl-trichloroethane (DDT), mercury, and arsenic deriving from an industrial plant active between ca. 1915 and 1996. Chironomidae taxa assemblages and sediments were collected in 2014 and 2019 upstream and downstream of the industrial area to analyze species responses to toxic substances in a river stretch with relatively uniform natural (i.e., hydro-morphological) characteristics. A total of 32 chironomid taxa were identified. Sediment concentrations reached levels potentially toxic for benthic invertebrates: 15.7 µg kg-1 1% organic carbon for DDT, 197 µg kg-1 dry weight (d.w.) for Hg, and 55.7 mg kg-1 d.w. for As. Canonical Correspondence Analysis (CCA) revealed a predominant seasonal gradient, followed by an upstream-downstream gradient. Partial CCA indicated that 5.2% of the total variation was associated with sediment contamination. Self-Organizing Maps (SOMs) were used to represent species responses to toxicants. Most species appeared to be tolerant, e.g., Chironomus riparius, Micropsectra atrofasciata, Conchapelopia pallidula, and Polypedilum spp. Sensitivity to contaminants was observed in only a few species: Diamesa spp., Sympotthastia spinifera, and Prodiamesa olivacea to DDT; Potthastia longimanus to Hg; Odontomesa fulva and Microtendipes pedellus to As. The chironomid community was characterized in presence of contamination levels commonly observed in freshwater ecosystems.

3.
J Environ Manage ; 326(Pt B): 116665, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423407

RESUMO

We examined the temporal profiles of many organic micropollutants analysed in a sediment core sampled from a highly anthropized tributary of the Po River, the Lambro River. Analysed for extractable organic halogens (EOX), total petroleum hydrocarbons (C10-C40TPH), polycyclic aromatic hydrocarbons (PAHs), common legacy pollutants (DDTs, PCBs), halogenated flame retardants (PBDEs, DBDPE, TBBPA-bis, TCBPA, TBBPA, HBCDs), organotins (TBT, TPhT), antimicrobials (TCS, TCC), fragrances (AHTN, HHCB) and phthalates (DMP, DEP, DnBP, BBP, DEHP, DnOP), the dated sediment core revealed the historical record of 50 years of chemical contamination discharged into the Lambro and thereby the Po River. In this regard, the peak levels of PCBs and DDTs found in Lambro sediments were also identified in other sediment cores collected from the Po River prodelta in the Adriatic Sea, thus hundreds of kilometres downstream (Combi et al., 2020). The highest risk to aquatic organisms was associated with decades of high levels of C10-C40 TPH, PBDEs, PCBs, PAHs, DDTs, EOX, TCC, AHTN and DEHP, which in different periods of the contamination history, showed exceedances of guideline/threshold values. C10-C40 TPH and TCC, for example, were very high in the 1960s, whereas PCBs, DDTs, and PBDEs, peaked from the 1980s onward. The corresponding sums of PEC quotients ranged between 0.48 and 28.63, with a mean value (±SD) for the entire recording period of 10.62 ± 9.83. Environmental legislations and improved wastewater treatments were the main drivers of the recent downward trends observed for most of the chemicals investigated. Floods in turn resulted in macroscopic yet temporary improvements in the chemical quality of the tributary, conveying contaminated sediments into the Po River.


Assuntos
Dietilexilftalato , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Bifenilos Policlorados/análise , Sedimentos Geológicos/química , Éteres Difenil Halogenados/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Itália
4.
Toxics ; 10(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36548624

RESUMO

This article focuses on a very peculiar habitat, the thin biofilm that covers the surface of rocks, cobbles, sediment grains, leaf litter, and vegetation on a riverbed. Species composition changes over time and depends on environmental conditions and perturbation of water quality. It provides several ecosystem services, contributing to the biogeochemical fluxes and reducing contamination by absorbing the pollutants. Biofilm into the Toce River (Ossola Valley, Piedmont, Italy) was investigated to assess its capacity to accumulate the metals and macroions from the water column. In this preliminary work, we investigated three sample points, in two different seasons. The community composition of biofilm was determined via morphological analysis (diatoms and non-diatoms algal community). We characterize the biofilm, a community of different organisms, from different perspectives. In the biofilm, Hg was analyzed with an automated mercury analyzer, other metals and macroions with inductively coupled plasma mass spectrometry (ICP-MS) (Al, As, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Ni, P, Pb, and Zn), and the carotenoid and chlorophyll composition of the photosynthetic organism with HPLC analysis for the primary producers. The results evidence a seasonal pattern in metals and macroions levels in the biofilm, and a significant difference in the biofilm community and in carotenoid composition, suggesting the utility of using the biofilm as an additional bioindicator to monitor the water quality of the river.

5.
Insects ; 13(10)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36292859

RESUMO

Chironomids are the species-richest family among macroinvertebrates and are often used as indicators of ecological conditions in inland waters. High taxonomic expertise is needed for identification and new species are still being described even in the well-known West Palearctic region. Our Microsoft Access relational database comprises data on Chironomid species collected in rivers and lakes in Italy and some other European countries over a period of about 50 years, often associated with physical-chemical data, but in some cases, only data on Chironomids are available with no associated environmental data. The aim of the present paper was to propose the calculation of ecological traits of Chironomid species as a tool to derive information on water quality, when only data on Chironomid species composition are present, while environmental data are lacking. Traits summarizing the species' response to environmental variables were evaluated, with emphasis on natural and man-influenced factors: current velocity, water temperature, conductivity, dissolved oxygen, and nutrients. Traits calculations were carried out in the R environment using a subset of our data, including both environmental data and Chironomid abundances. The relations between sites, Chironomid, species and traits were evaluated using correspondence analysis and other multivariate methods. The response of species showed an interaction among different factors, with the possibility of ordering species along a single environmental gradient, extending from cold running waters to warm standing waters, with few exceptions.

6.
Environ Toxicol Chem ; 41(10): 2404-2419, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35781318

RESUMO

The great concern over the environmental impact of wastewaters has led to the designing of advanced treatment processes to upgrade conventional treatment plants and achieve a significant reduction of contaminants in receiving waters. In the present study we combined chemical and ecotoxicological analyses, aiming to evaluate the reduction of toxicity effects associated with the removal of micropollutants and to define the contribution of the detected compounds to the overall toxicity of the mixtures in a series of wastewater effluents collected from a secondary treatment (OUT 2) and from a tertiary activated carbon treatment (OUT 3) plant. The target compounds were selected after a screening procedure among pharmaceuticals, musk fragrances, and trace metals. The classical algal growth inhibition test was conducted on the original effluent samples and on different fractions obtained by solid-phase extraction (SPE) treatment. A good accordance was found between the removal of toxicity (30%-80%) and organic compounds (70%-80%) after the tertiary treatment, suggesting its high efficiency to improve the wastewater quality. The discrepancy between the contribution to the overall toxicity of the nonadsorbable compounds (i.e., inorganic or very polar organic compounds) as experimentally measured by the SPE bioassays (18%-76%) and calculated by the concentration addition approach (>97%) could be mitigated by including the bioavailability correction in metal-toxicity modeling of wastewater mixtures. For the organic compounds, the toxic equivalency method enabled us to quantify the portion of toxicity explained by the detected chemicals in both OUT 2 (82%-104%) and OUT 3 (5%-57%), validating the selection of the target molecules. The applied integrating approach could be implemented by the inclusion of both additional target chemicals and toxicity endpoints. Environ Toxicol Chem 2022;41:2404-2419. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Carvão Vegetal , Ecotoxicologia , Compostos Orgânicos , Preparações Farmacêuticas , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Insects ; 13(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35055894

RESUMO

The larvae of some species of the subgenus Orthocladius s. str. (Diptera, Chironomidae) are here described for the first time with corrections and additions to the descriptions of adult males and pupal exuviae. The identification of larvae is generally not possible without association with pupal exuviae and/or adult males, so the descriptions here are based only on reared material or on pupae with the associated larval exuviae. Usually, Chironomidae larvae can be separated on the basis of morphometric characters, the most discriminant ones are: (1) the ratio between the width of median tooth of mentum (Dm) and the width of the first lateral tooth (Dl) = mental ratio (DmDl), (2) the ratio between the length of the first antennal segment (A1) and the combined length of segments 2-5 (A2-5) = antennal ratio (AR). The shape of mandible, maxilla, and other body parts are almost identical in all the species considered in this study. The larva of Orthocladius (Symposiocladius) lignicola is very characteristic and can be separated by the shape of mentum and the larvae of all the known species of Symposiocladius are characterized by the presence of large Lauterborn organs on antennae and of tufts of setae on abdominal segments. The larvae of Orthocladius (Orthocladius) oblidens and Orthocladius (Orthocladius) rhyacobius can be distinguished from other species basing on their large Dm and to each other by AR. A principal component analysis was carried out using 5 characters: (1) Dm, (2) Dl, (3) length of A1, (4) width of A1 (A1W), (5) combined length of segments 2-5 (A2-5). The most discriminant characters were Dm and A1, confirming that DmDl and AR can be used to separate species at larval stage, but the large superposition of morphometric characters in different species confirms that association with pupal exuviae is in any case needed to identify larvae. In future perspective, the development of reference DNA barcodes from specimens identified by specialists is recommended since possibly the best tool for larvae identification, but association of barcodes with morphotypes is in any case fundamental.

8.
Toxics ; 9(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34564348

RESUMO

Riverine sediments are important sites of mercury methylation and benthic invertebrates may be indicators of Hg exposure to higher organisms. From 2014 to 2018, sediments and invertebrates were collected along a mercury gradient in the Toce River (Northern Italy) and analyzed for THg and MeHg. Concentrations in invertebrates, separated according to taxon and to Functional Feeding Group, ranged from 20 to 253 µg kg-1 dry weight (d.w.) for THg, increasing from grazers (Leuctra, Baetis, Serratella) to predators (Perla). MeHg ranged from 3 to 88 µg kg-1 d.w. in biota, representing 6-53% of THg, while in sediments it was mostly below LOD (0.7 µg kg-1), accounting for ≤3.8% of THg. The Biota-Sediment Accumulation Factor (BSAF, ranging 0.2-4.6) showed an inverse relation to exposure concentrations (THg in sediments, ranging 0.014-0.403 µg kg-1 d.w.) and to organic carbon. THg in invertebrates (up to 73 µg kg-1 wet weight), i.e., at the basal levels of the aquatic trophic chain, exceeded the European Environmental Quality Standard for biota (20 µg kg-1 w.w.), posing potential risks for top predators. Concentrations in adult insects were close to those in aquatic stages, proving active mercury transfer even to terrestrial food chains.

9.
Toxics ; 9(7)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34357915

RESUMO

We present the first assessment of atmospheric pollution by mercury (Hg) in an industrialized area located in the Ossola Valley (Italian Central Alps), in close proximity to the Toce River. The study area suffers from a level of Hg contamination due to a Hg cell chlor-alkali plant operating from 1915 to the end of 2017. We measured gaseous elemental Hg (GEM) levels by means of a portable Hg analyzer during car surveys between autumn 2018 and summer 2020. Moreover, we assessed the long-term dispersion pattern of atmospheric Hg by analyzing the total Hg concentration in samples of lichens collected in the Ossola Valley. High values of GEM concentrations (1112 ng m-3) up to three orders of magnitude higher than the typical terrestrial background concentration in the northern hemisphere were measured in the proximity of the chlor-alkali plant. Hg concentrations in lichens ranged from 142 ng g-1 at sampling sites located north of the chlor-alkali plant to 624 ng g-1 in lichens collected south of the chlor-alkali plant. A north-south gradient of Hg accumulation in lichens along the Ossola Valley channel was observed, highlighting that the area located south of the chlor-alkali plant is more exposed to the dispersion of Hg emitted into the atmosphere from the industrial site. Long-term studies on Hg emission and dispersion in the Ossola Valley are needed to better assess potential impact on ecosystems and human health.

10.
Sci Total Environ ; 782: 146766, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33839650

RESUMO

River sediments generally act as a sink for trace elements but, when resuspended, they contribute to long-term downstream transport of contamination, which may finally reach the marine environment. This study analyzed these processes in a complex aquatic system that includes a contaminated tributary, the Lambro River (Northern Italy) and its recipient and main Italian watercourse, the Po River, with the prodelta in the Adriatic Sea. The study was conducted from a historical perspective which, covering the last 50 years, examined the main driving events such as the inputs of contaminants, the construction of WWTPs and the evolution of environmental legislation. The time trend of trace element contamination was analyzed in a sediment core collected in the Lambro River and dated 1962-2011. The highest enrichments were found for Hg, Zn, Cu, Pb and Cd, which showed similar trends, with EF maxima in the '60s-'90s (172, 56, 40, 28 and 21, respectively), following industrial and urban development, and a general decreasing pattern after the late '90s. Only in the 2000s the ecological risk associated with metal contamination showed mean PEC Quotients stably below 1. The results of a literature survey on sedimentary trace elements in the Po River and the prodelta for the last 50 years were then compared to the Lambro sediment core. A significant contribution to Cu, Zn, Pb, Hg and Cd contamination was proved to derive from Lambro sediment transport. In the prodelta, increasing Ni and Cr concentrations were also evidenced, likely as a result of enhanced soil erosion in the Po basin. This study highlights the key role of WWTPs, of lower-impact industrial processes and of environmental legislation in reducing contaminant inputs. It also emphasizes the active contribution of riverine sediment-bound contamination to long-distance marine sediment quality.

11.
Environ Sci Pollut Res Int ; 28(28): 38193-38208, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33728603

RESUMO

Lake tributaries collect contaminants from the watershed, which may accumulate in lake sediments over time and may be removed through the outlets. DDx, PCB, PAH, PBDE, and trace element (Hg, As, Cd, Ni, Cu, Pb) contamination was analyzed over 2001-2018 period in sediments of the 5 main tributaries and of the outlet of Lake Maggiore (Northern Italy). Sediment cores were collected in two points of the lake, covering 1995-2017 period. Concentrations were compared to Sediment Quality Guidelines (PECs), potential sources and drivers (land use, population numbers, industrial activities, hydrology) were analyzed, and temporal trends were calculated (Mann-Kendall test). PCB, PBDE, Pb, Cd, and Hg contamination derives mainly from heavy urbanization and industry. Cu and Pb show a temporal decreasing trend in the basin, likely as result of improved wastewater treatments and change in use. A recent PAH increase in the whole lake may derive from a single point source. A legacy DDx and Hg industrial pollution is still present, due to high persistence in sediments. Values of DDx, Hg, Pb, and Cu above the PECs in lake sediments and/or in the outlet show potential risk for aquatic organisms. Results highlight the key role of tributaries in driving contamination from the watershed to the lake through sediment transport.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Itália , Lagos , Metais Pesados/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise
12.
MethodsX ; 8: 101581, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004215

RESUMO

We developed and compared two analytical methods for determination of MeHg in freshwater biota and sediments, by: I) simplified static headspace GC-MS using internal standard (IS) isotope dilution quantification, after microwave acid digestion and aqueous phase NaBEt4 ethylation; II) Automated Mercury Analyzer, after double toluene extraction followed by back-extraction with L-cystein. The performance was evaluated by analysis of certified reference materials. For biota, mean recovery was 100 ± 2% and relative standard deviation (RSD) ≤ 6.8% for method I, and mean recovery was 98 ± 7% and RSD ≤13% for method II. For sediments, recovery of 94.5% and RSD of 8.8% were obtained with method I, and recovery of 90.3% and RSD of 9.4% with method II. Limits of detection (LOD) were 0.7 µg kg-1 and 6 µg kg-1, respectively. Both techniques were tested for MeHg analysis in freshwater invertebrates, fish and sediments, covering a large range of MeHg values (1.9-670 µg kg-1 d.w.). • Both protocols proved to be suitable for MeHg analysis in complex environmental matrices, even if, for method II, interferences in the extraction phase and limited sensitivity may hinder sediment analysis. • Passing-Bablock regression revealed a slight disproportion between methods, with line slope = 1.058 (95% CI ranging from 1.001 to 1.090).

13.
Sci Total Environ ; 740: 139902, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32927533

RESUMO

Freshwater fish communities are impacted by multiple pressures, determining loss of functional diversity and redundancy. Our aim was to disentangle the roles and relevancies of different pressures in shaping fish communities in small streams of the Po plain (North Italy). Long term trend (1998-2018) of functional diversity of 31 fish communities was assessed and modeled in respect to three potential pressures: temperature increase, intensity of exotic fish invasion, and habitat quality degradation. Ecological traits mostly influenced by the pressures were also identified. Reduction of functional richness mostly due to local extinction or contraction of cold adapted predators, such as salmonids, was linked to increasing temperatures. Warming probably also led to a shift of generalist and dominant species, which became more abundant in streams hosting mixed communities of salmonids and cyprinids, and determined the increase of functional dispersion and uniqueness. Reduction of functional redundancy and increasing functional dispersion were both also related to the introduction of new ecological traits brought by expanding exotic species. Low functional overlap was found among native and exotic species, indicating that the invasion process was mainly controlled by competitive interactions and/or resource opportunism. Functional response to habitat quality was not clearly evident. In conclusion, the impact of temperature increase and exotic species on fish functional diversity was effective, idiosyncratic and mediated by the scale of analysis and by the intensity of pressures.


Assuntos
Biodiversidade , Cyprinidae , Animais , Ecossistema , Peixes , Água Doce , Itália
14.
Environ Toxicol Chem ; 38(5): 988-999, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30790355

RESUMO

A multigenerational test with Chironomus riparius was performed to assess long-term effects on life-traits of exposure to selected perfluoroalkyl compounds: perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluorobutane sulfonate (PFBS). These persistent contaminants are widespread in aquatic ecosystems at low concentrations, possibly exerting long-term toxicity. Larvae of C. riparius of a native population were exposed for 10 generations to 10 µg/L nominal concentrations of PFOS, PFOA, and PFBS, comparable with the maximum values found in European rivers. All treatments showed reduced growth at most/several generations. No effects on survival, development, and reproduction were found. A final tolerance-induction test was performed exposing the pre-exposed experimental cohorts to 100 µg/L PFOS and 150 µg/L PFOA for a whole life cycle. Factorial analysis of variance revealed no difference between treatments (i.e., PFOS vs PFOA), indicating no induced tolerance. Instead, organisms pre-exposed to PFBS were the most stressed, followed by those pre-exposed to PFOA and PFOS, with earlier emergence and reduced adult weight. The results may be related to general stress and genetic erosion induced by long-term laboratory culture, but also to long-term toxicant exposure. However, no effects at the population level (population growth rate) were proved, and thus a toxicity risk in real ecosystems at the tested concentrations seems unlikely. Environ Toxicol Chem 2019;00:1-12. © 2019 SETAC.


Assuntos
Chironomidae/fisiologia , Fluorocarbonos/toxicidade , Animais , Chironomidae/efeitos dos fármacos , Chironomidae/crescimento & desenvolvimento , Feminino , Larva/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , Masculino , Reprodução/efeitos dos fármacos , Análise de Sobrevida , Poluentes Químicos da Água/toxicidade
15.
Water Res ; 97: 162-74, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26706125

RESUMO

This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The available data underline a high efficiency for phosphorus binding. This efficiency can be limited by the presence of humic substances and competing oxyanions. Lanthanum concentrations detected during a LMB application are generally below acute toxicological threshold of different organisms, except in low alkalinity waters. To date there are no indications for long-term negative effects on LMB treated ecosystems, but issues related to La accumulation, increase of suspended solids and drastic resources depletion still need to be explored, in particular for sediment dwelling organisms. Application of LMB in saline waters need a careful risk evaluation due to potential lanthanum release.


Assuntos
Bentonita/química , Lantânio/química , Eutrofização , Lagos , Fósforo/química
16.
Environ Sci Pollut Res Int ; 23(11): 10477-10493, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26507734

RESUMO

The large estuary that the River Po forms at its confluence into the Adriatic Sea comprises a multitude of transitional environments, including coastal lagoons. This complex system receives the nutrients transported by the River Po but also its load of chemical contaminants, which may pose a substantial (eco)toxicological risk. Despite the high ecological and economic importance of these vulnerable environments, there is a substantial lack of information on this risk. In light of the recent amendments of the European Water Framework Directive (2013/39/EU), the present study investigated the sediment contamination of six coastal lagoons of the Po delta and its effects on Manila clams (Ruditapes philippinarum), exposed in situ for 3 months. Sediment contamination and clam bioaccumulation of a wide range of chemicals, i.e. trace metals (Cd, Cr, Ni, Hg, Pb, As), polybrominated diphenyl ethers (PBDEs), alkylphenols (APs), organochlorine compounds (PCBs, DDTs), polycyclic aromatic hydrocarbons (PAHs) and organotins (TPhT, TBT), suggested a southward increase related to the riverine transports. Where the River Po influence was more direct, the concentrations of contaminants were higher, with nonylphenol and BDE-209 exceeding sediment quality guidelines. Biometric indicators suggested the influence of contamination on organism health; an inverse relationship between PBDEs in sediments and clam condition index has been found, as well as different biota-sediment accumulation factors (BSAFs) in the lagoons.


Assuntos
Bivalves/efeitos dos fármacos , Disruptores Endócrinos/análise , Exposição Ambiental/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Animais , Europa (Continente) , Hidrocarbonetos Halogenados/análise , Rios
17.
Environ Sci Pollut Res Int ; 23(11): 10542-10555, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26662101

RESUMO

DDT and mercury (Hg) contamination in the Toce River (Northern Italy) was caused by a factory producing technical DDT and using a mercury-cell chlor-alkali plant. In this study, DDT and Hg contamination and bioavailability were assessed by using different approaches: (1) direct evaluation of sediment contamination, (2) assessment of bioaccumulation in native benthic invertebrates belonging to different taxonomic/functional groups, and (3) evaluation of the in situ bioavailability of DDT and Hg using passive samplers. Sampling sites were selected upstream and downstream the industrial plant along the river axis. Benthic invertebrates (Gammaridae, Heptageniidae, and Diptera) and sediments were collected in three seasons and analyzed for DDT and Hg content and the results were used to calculate the biota sediment accumulation factor (BSAF). Polyethylene passive samplers (PEs) for DDT and diffusive gradients in thin films (DGTs) for Hg were deployed in sediments to estimate the concentration of the toxicants in pore water. Analysis for (DDx) were performed using GC-MS. Accuracy was within ±30 % of the certified values and precision was >20 % relative standard deviation (RSD). Total mercury concentrations were determined using an automated Hg mercury analyzer. Precision was >5 % and accuracy was within ±10 % of certified values. The results of all the approaches (analysis of sediment, biota, and passive samplers) showed an increasing contamination from upstream to downstream sites. BSAF values revealed the bioavailability of both contaminants in the study sites, with values up to 49 for DDx and up to 3.1 for Hg. No correlation was found between values in sediments and the organisms. Concentrations calculated using passive samplers were correlated with values in benthic invertebrates, while no correlation was found with concentrations in sediments. Thus, direct analysis of toxicant in sediments does not provide a measurement of bioavailability. On the contrary, analysis of bioaccumulation in benthic organisms provides the most realistic picture of the site-specific bioavailability of DDx and Hg, but this approach is time-consuming and not always feasible. On the other hand, the in situ deployment of passive samplers proved to be a powerful tool, providing a good surrogate measure of bioaccumulation.


Assuntos
DDT , Sedimentos Geológicos/química , Invertebrados/química , Mercúrio , Rios/química , Poluentes Químicos da Água , Animais , Disponibilidade Biológica , Biota , DDT/análise , DDT/farmacocinética , Itália , Mercúrio/análise , Mercúrio/farmacocinética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/farmacocinética
18.
Sci Total Environ ; 538: 654-63, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26327633

RESUMO

Effect-based monitoring is a recommended approach suggested in European Guidelines to assess the response of ecosystem affected by a pollution source, considering the effects at community, population, individual but also at suborganism level. A combined chemical, ecological and genetic approach was applied in order to assess the impact of a fluoropolymer plant on the macrobenthic community of the Northern Italian river Bormida (Piedmont region). The macrobenthic community living downstream of the industrial discharge was chronically exposed to a mixture of perfluoroalkyl substances (PFAS), with perfluorooctanoic acid as the main compound, at concentrations up to several µgL(-1). Ecological assessment proved that the downstream community was not substantially different from that living upstream of the pollution source. The impact on community is not quantifiable with the traditional monitoring methods used for ecological classification under European regulation because macrobenthic communities showed only slight differences in their structure. In order to highlight effects on genetic variability of the native population, a subcellular analysis by using the AFLP (Amplified Fragment Length Polymorphism) genetic technique was applied to genotype of individuals of a selected species (Hydropsyche modesta, Trichoptera) collected in the two sampling sites. Percentage of variation between the two populations was 6.8%, a threshold compatible with a genetic drift induced in the downstream population. The genetic study carried out in field identified a significant divergence between exposed and non-exposed populations, but at present it is not possible to associate this divergence to a specific effect induced by PFAS.


Assuntos
Monitoramento Ambiental/métodos , Fluorocarbonos/análise , Invertebrados/crescimento & desenvolvimento , Polímeros/análise , Poluentes Químicos da Água/análise , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Fluorocarbonos/toxicidade , Invertebrados/classificação , Invertebrados/genética , Polímeros/toxicidade , Rios/química , Poluentes Químicos da Água/toxicidade
19.
Ecol Appl ; 21(4): 1272-82, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21774429

RESUMO

Semiaquatic organisms depend on the features of both water bodies and landscapes; the interplay between terrestrial and aquatic systems might influence the semiaquatic communities, determining the scale at which management would be more effective. However, the consequences of such interplay are not frequently quantified, particularly at the community level. We analyzed the distribution of amphibians to evaluate whether the influence of landscape features on freshwater ecosystems can have indirect consequences at both the species and community level. We surveyed 74 streams in northern Italy to obtain data on breeding amphibians, water, and microhabitat features; we also measured features of surrounding landscapes. We used an information-theoretic approach and structural equation models to compare hypotheses on causal relationships between species distribution and variables measured at multiple levels. We also used a constrained redundancy analyses to evaluate causal relationships between multivariate descriptors of habitat features and community composition. Distribution of Salamandra salamandra was related to landscape, hydrological, and water characteristics: salamanders were more frequent in permanent streams with low phosphate concentration within natural landscapes. Water characteristics were dependent on landscape: streams in natural landscapes had less phosphates. Landscape influenced the salamander both directly and indirectly through its influence on phosphates. Community structure was determined by both landscape and water characteristics. Several species were associated with natural landscapes, and with particular water characteristics. Landscape explained a significant proportion of variability of water characteristics; therefore it probably had indirect effects on community. Upland environments play key roles for amphibians, for example, as the habitat of adults, but upland environments also have indirect effects on the aquatic life stages, mediated through their influence on water characteristics. Synergistic effects can magnify the negative consequences of landscape alteration on amphibians; landscape management can be particularly effective, as it can also improve wetland features.


Assuntos
Anfíbios/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Rios , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...