Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(1): 15-21, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38193366

RESUMO

The active removal of DNA methylation marks is governed by the ten-eleven translocation (TET) family of enzymes (TET1-3), which iteratively oxidize 5-methycytosine (5mC) into 5-hydroxymethycytosine (5hmC), and then 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). TET proteins are frequently mutated in myeloid malignancies or inactivated in solid tumors. These methylcytosine dioxygenases are α-ketoglutarate (αKG)-dependent and are, therefore, sensitive to metabolic homeostasis. For example, TET2 is activated by vitamin C (VC) and inhibited by specific oncometabolites. However, understanding the regulation of the TET2 enzyme by different metabolites and its activity remains challenging because of limitations in the methods used to simultaneously monitor TET2 substrates, products, and cofactors during catalysis. Here, we measure TET2-dependent activity in real time using NMR. Additionally, we demonstrate that in vitro activity of TET2 is highly dependent on the presence of VC in our system and is potently inhibited by an intermediate metabolite of the TCA cycle, oxaloacetate (OAA). Despite these opposing effects on TET2 activity, the binding sites of VC and OAA on TET2 are shared with αKG. Overall, our work suggests that NMR can be effectively used to monitor TET2 catalysis and illustrates how TET activity is regulated by metabolic and cellular conditions at each oxidation step.


Assuntos
5-Metilcitosina , Dioxigenases , 5-Metilcitosina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Citosina , Oxirredução , Metilação de DNA , Dioxigenases/metabolismo
2.
Mol Biol Cell ; 34(12): ar118, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37647143

RESUMO

Production of large amounts of histone proteins during S phase is critical for proper chromatin formation and genome integrity. This process is achieved in part by the presence of multiple copies of replication dependent (RD) histone genes that occur in one or more clusters in metazoan genomes. In addition, RD histone gene clusters are associated with a specialized nuclear body, the histone locus body (HLB), which facilitates efficient transcription and 3' end-processing of RD histone mRNA. How all five RD histone genes within these clusters are coordinately regulated such that neither too few nor too many histones are produced, a process referred to as histone homeostasis, is not fully understood. Here, we explored the mechanisms of coordinate regulation between multiple RD histone loci in Drosophila melanogaster and Drosophila virilis. We provide evidence for functional competition between endogenous and ectopic transgenic histone arrays located at different chromosomal locations in D. melanogaster that helps maintain proper histone mRNA levels. Consistent with this model, in both species we found that individual histone gene arrays can independently assemble an HLB that results in active histone transcription. Our findings suggest a role for HLB assembly in coordinating RD histone gene expression to maintain histone homeostasis.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Histonas/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Homeostase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Res Sq ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37292668

RESUMO

Biomolecules continually sample alternative conformations. Consequently, even the most energetically favored ground conformational state has a finite lifetime. Here, we show that, in addition to the 3D structure, the lifetime of a ground conformational state determines its biological activity. Using hydrogen-deuterium exchange nuclear magnetic resonance spectroscopy, we found that Zika virus exoribonuclease-resistant RNA (xrRNA) encodes a ground conformational state with a lifetime that is ~105-107 longer than that of canonical base pairs. Mutations that shorten the apparent lifetime of the ground state without affecting its 3D structure decreased exoribonuclease resistance in vitro and impaired virus replication in cells. Additionally, we observed this exceptionally long-lived ground state in xrRNAs from diverse infectious mosquito-borne flaviviruses. These results demonstrate the biological significance of the lifetime of a preorganized ground state and further suggest that elucidating the lifetimes of dominant 3D structures of biomolecules may be crucial for understanding their behaviors and functions.

5.
Epigenetics Chromatin ; 15(1): 34, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36180920

RESUMO

Histones have a long history of research in a wide range of species, leaving a legacy of complex nomenclature in the literature. Community-led discussions at the EMBO Workshop on Histone Variants in 2011 resulted in agreement amongst experts on a revised systematic protein nomenclature for histones, which is based on a combination of phylogenetic classification and historical symbol usage. Human and mouse histone gene symbols previously followed a genome-centric system that was not applicable across all vertebrate species and did not reflect the systematic histone protein nomenclature. This prompted a collaboration between histone experts, the Human Genome Organization (HUGO) Gene Nomenclature Committee (HGNC) and Mouse Genomic Nomenclature Committee (MGNC) to revise human and mouse histone gene nomenclature aiming, where possible, to follow the new protein nomenclature whilst conforming to the guidelines for vertebrate gene naming. The updated nomenclature has also been applied to orthologous histone genes in chimpanzee, rhesus macaque, dog, cat, pig, horse and cattle, and can serve as a framework for naming other vertebrate histone genes in the future.


Assuntos
Genômica , Histonas , Animais , Bovinos , Cães , Genoma , Genômica/métodos , Histonas/genética , Cavalos , Humanos , Macaca mulatta , Mamíferos/genética , Camundongos , Filogenia , Suínos
6.
RNA ; 28(11): 1519-1533, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36041871

RESUMO

Metazoan histone mRNAs are the only cellular eukaryotic mRNAs that are not polyadenylated, ending instead in a conserved stem-loop. SLBP is bound to the 3' end of histone mRNAs and is required for translation of histone mRNA. The expression of histone mRNAs is tightly cell-cycle regulated. A major regulatory step is rapid degradation of histone mRNA at the end of S-phase or when DNA synthesis is inhibited in S-phase. 3'hExo, a 3' to 5' exonuclease, binds to the SLBP/SL complex and trims histone mRNA to 3 nt after the stem-loop. Together with a terminal uridyl transferase, 3'hExo maintains the length of the histone mRNA during S-phase. 3'hExo is essential for initiating histone mRNA degradation on polyribosomes, initiating degradation into the 3' side of the stem-loop. There is extensive uridylation of degradation intermediates in the 3' side of the stem when histone mRNA is degraded. Here, we knocked out TUT7 and 3'hExo and we show that both modification of histone mRNA during S-phase and degradation of histone mRNA involve the interaction of 3'hExo, and a specific TUTase, TENT3B (TUT7, ZCCHC6). Knockout of 3'hExo prevents the initiation of 3' to 5' degradation, stabilizing histone mRNA, whereas knockout of TUT7 prevents uridylation of the mRNA degradation intermediates, slowing the rate of degradation. In synchronized 3'hExo KO cells, histone mRNA degradation is delayed, but the histone mRNA is degraded prior to mitosis by a different pathway.


Assuntos
Histonas , Estabilidade de RNA , Animais , Humanos , Histonas/genética , Histonas/metabolismo , Menogaril , Células HeLa , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(18): e2118126119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476513

RESUMO

Zoonotic transmission of coronaviruses poses an ongoing threat to human populations. Endemic outbreaks of swine acute diarrhea syndrome coronavirus (SADS-CoV) have caused severe economic losses in the pig industry and have the potential to cause human outbreaks. Currently, there are no vaccines or specific antivirals against SADS-CoV, and our limited understanding of SADS-CoV host entry factors could hinder prompt responses to a potential human outbreak. Using a genomewide CRISPR knockout screen, we identified placenta-associated 8 protein (PLAC8) as an essential host factor for SADS-CoV infection. Knockout of PLAC8 abolished SADS-CoV infection, which was restored by complementing PLAC8 from multiple species, including human, rhesus macaques, mouse, pig, pangolin, and bat, suggesting a conserved infection pathway and susceptibility of SADS-CoV among mammals. Mechanistically, PLAC8 knockout does not affect viral entry; rather, knockout cells displayed a delay and reduction in viral subgenomic RNA expression. In a swine primary intestinal epithelial culture (IEC) infection model, differentiated cultures have high levels of PLAC8 expression and support SADS-CoV replication. In contrast, expanding IECs have low levels of PLAC8 expression and are resistant to SADS-CoV infection. PLAC8 expression patterns translate in vivo; the immunohistochemistry of swine ileal tissue revealed high levels of PLAC8 protein in neonatal compared to adult tissue, mirroring the known SADS-CoV pathogenesis in neonatal piglets. Overall, PLAC8 is an essential factor for SADS-CoV infection and may serve as a promising target for antiviral development for potential pandemic SADS-CoV.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Doenças dos Suínos , Alphacoronavirus/genética , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Infecções por Coronavirus/epidemiologia , Suínos
8.
Methods Enzymol ; 655: 291-324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34183127

RESUMO

In animal cells, replication-dependent histone pre-mRNAs are processed at the 3'-end by an endonucleolytic cleavage carried out by the U7 snRNP, a machinery that contains the U7 snRNA and many protein subunits. Studies on the composition of this machinery and understanding of its role in 3'-end processing were greatly facilitated by the development of an in vitro system utilizing nuclear extracts from mammalian cells 35 years ago and later from Drosophila cells. Most recently, recombinant expression and purification of the components of the machinery have enabled the full reconstitution of an active machinery and its complex with a model pre-mRNA substrate, using 13 proteins and 2 RNAs, and the determination of the structure of this active machinery. This chapter presents protocols for preparing nuclear extracts containing endogenous processing machinery, for assembling semi-recombinant and fully reconstituted machineries, and for histone pre-mRNA 3'-end processing assays with these samples.


Assuntos
Histonas , Precursores de RNA , Animais , Drosophila/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Ribonucleoproteína Nuclear Pequena U7/genética , Ribonucleoproteína Nuclear Pequena U7/metabolismo
9.
Mol Biol Cell ; 32(9): 942-955, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33788585

RESUMO

The histone locus body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of replication-dependent (RD) histone mRNAs, which are the only eukaryotic mRNAs lacking a poly-A tail. Many nuclear bodies contain distinct domains, but how internal organization is related to nuclear body function is not fully understood. Here, we demonstrate using structured illumination microscopy that Drosophila HLBs have a "core-shell" organization in which the internal core contains transcriptionally active RD histone genes. The N-terminus of Mxc, which contains a domain required for Mxc oligomerization, HLB assembly, and RD histone gene expression, is enriched in the HLB core. In contrast, the C-terminus of Mxc is enriched in the HLB outer shell as is FLASH, a component of the active U7 snRNP that cotranscriptionally cleaves RD histone pre-mRNA. Consistent with these results, we show biochemically that FLASH binds directly to the Mxc C-terminal region. In the rapid S-M nuclear cycles of syncytial blastoderm Drosophila embryos, the HLB disassembles at mitosis and reassembles the core-shell arrangement as histone gene transcription is activated immediately after mitosis. Thus, the core-shell organization is coupled to zygotic histone gene transcription, revealing a link between HLB internal organization and RD histone gene expression.


Assuntos
Estruturas do Núcleo Celular/metabolismo , Histonas/metabolismo , Microscopia/métodos , Animais , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Estruturas do Núcleo Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitose , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Elementos Reguladores de Transcrição/genética , Ribonucleoproteína Nuclear Pequena U7/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Zigoto/metabolismo
10.
Mol Ther Nucleic Acids ; 23: 821-834, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33614232

RESUMO

Circular RNAs (circRNAs) are highly stable RNA molecules that are attractive templates for expression of therapeutic proteins and non-coding RNAs. In eukaryotes, circRNAs are primarily generated by the spliceosome through backsplicing. Here, we interrogate different molecular elements including intron type and length, Alu repeats, internal ribosome entry sites (IRESs), and exon length essential for circRNA formation and exploit this information to engineer robust backsplicing and circRNA expression. Specifically, we leverage the finding that the downstream intron can tolerate large inserts without affecting splicing to achieve tandem expression of backspliced circRNAs and tRNA intronic circRNAs from the same template. Further, truncation of selected intronic regions markedly increased circRNA formation in different cell types in vitro as well as AAV-mediated circRNA expression in cardiac and skeletal muscle tissue in vivo. We also observed that different IRES elements and exon length influenced circRNA expression and translation, revealing an exonic contribution to splicing, as evidenced by different RNA species produced. Taken together, these data provide new insight into improving the design and expression of synthetic circRNAs. When combined with AAV capsid and promoter technologies, the backsplicing introns and IRES elements constituting this modular platform significantly expand the gene expression toolkit.

11.
Nat Commun ; 12(1): 359, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441544

RESUMO

Phosphorylated H2A.X is a critical chromatin marker of DNA damage repair (DDR) in higher eukaryotes. However, H2A.X gene expression remains relatively uncharacterised. Replication-dependent (RD) histone genes generate poly(A)- mRNA encoding new histones to package DNA during replication. In contrast, replication-independent (RI) histone genes synthesise poly(A)+ mRNA throughout the cell cycle, translated into histone variants that confer specific epigenetic patterns on chromatin. Remarkably H2AFX, encoding H2A.X, is a hybrid histone gene, generating both poly(A)+ and poly(A)- mRNA isoforms. Here we report that the selective removal of either mRNA isoform reveals different effects in different cell types. In some cells, RD H2A.X poly(A)- mRNA generates sufficient histone for deposition onto DDR associated chromatin. In contrast, cells making predominantly poly(A)+ mRNA require this isoform for de novo H2A.X synthesis, required for efficient DDR. This highlights the importance of differential H2A.X mRNA 3'-end processing in the maintenance of effective DDR.


Assuntos
Ciclo Celular/genética , Dano ao DNA , Reparo do DNA , Histonas/genética , Poli A/genética , RNA Mensageiro/genética , Linhagem Celular , DNA/genética , DNA/metabolismo , Replicação do DNA/genética , Regulação da Expressão Gênica , Células HCT116 , Células HeLa , Histonas/metabolismo , Humanos , Células Jurkat , Poli A/metabolismo , RNA Mensageiro/metabolismo
12.
J Cell Sci ; 134(3)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33408246

RESUMO

Replication-dependent histone mRNAs are the only cellular mRNAs that are not polyadenylated, ending in a stemloop instead of a polyA tail, and are normally regulated coordinately with DNA replication. Stemloop-binding protein (SLBP) binds the 3' end of histone mRNA, and is required for processing and translation. During Drosophila oogenesis, large amounts of histone mRNAs and proteins are deposited in the developing oocyte. The maternally deposited histone mRNA is synthesized in stage 10B oocytes after the nurse cells complete endoreduplication. We report that in wild-type stage 10B oocytes, the histone locus bodies (HLBs), formed on the histone genes, produce histone mRNAs in the absence of phosphorylation of Mxc, which is normally required for histone gene expression in S-phase cells. Two mutants of SLBP, one with reduced expression and another with a 10-amino-acid deletion, fail to deposit sufficient histone mRNA in the oocyte, and do not transcribe the histone genes in stage 10B. Mutations in a putative SLBP nuclear localization sequence overlapping the deletion phenocopy the deletion. We conclude that a high concentration of SLBP in the nucleus of stage 10B oocytes is essential for histone gene transcription.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Drosophila , Histonas , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histonas/genética , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA , Proteínas Supressoras de Tumor , Fatores de Poliadenilação e Clivagem de mRNA
13.
Sci Adv ; 6(51)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33355139

RESUMO

Evolutionarily conserved DCAF1 is a major substrate receptor for the DDB1-CUL4-ROC1 E3 ubiquitin ligase (CRL4) and controls cell proliferation and development. The molecular basis for these functions is unclear. We show here that DCAF1 loss in multiple tissues and organs selectively eliminates proliferating cells and causes perinatal lethality, thymic atrophy, and bone marrow defect. Inducible DCAF1 loss eliminates proliferating, but not quiescent, T cells and MEFs. We identify the ribosome assembly factor PWP1 as a substrate of the CRL4DCAF1 ligase. DCAF1 loss results in PWP1 accumulation, impairing rRNA processing and ribosome biogenesis. Knockdown or overexpression of PWP1 can rescue defects or cause similar defects as DCAF1 loss, respectively, in ribosome biogenesis. DCAF1 loss increases free RPL11, resulting in L11-MDM2 association and p53 activation. Cumulatively, these results reveal a critical function for DCAF1 in ribosome biogenesis and define a molecular basis of DCAF1 function in cell proliferation and development.


Assuntos
Proteínas de Transporte , Ubiquitina-Proteína Ligases , Proteínas de Transporte/genética , Proliferação de Células , Ribossomos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
14.
Dev Cell ; 54(3): 379-394.e6, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32579968

RESUMO

Many membraneless organelles form through liquid-liquid phase separation, but how their size is controlled and whether size is linked to function remain poorly understood. The histone locus body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of histone mRNAs. Here, we show that Drosophila HLBs form through phase separation. During embryogenesis, the size of HLBs is controlled in a precise and dynamic manner that is dependent on the cell cycle and zygotic histone gene activation. Control of HLB growth is achieved by a mechanism integrating nascent mRNAs at the histone locus, which facilitates phase separation, and the nuclear concentration of the scaffold protein multi-sex combs (Mxc), which is controlled by the activity of cyclin-dependent kinases. Reduced Cdk2 activity results in smaller HLBs and the appearance of nascent, misprocessed histone mRNAs. Thus, our experiments identify a mechanism linking nuclear body growth and size with gene expression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/genética , Histonas/metabolismo , Ativação Transcricional/fisiologia , Animais , Núcleo Celular/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Desenvolvimento Embrionário/fisiologia , RNA Mensageiro/genética
15.
RNA ; 26(10): 1345-1359, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32554553

RESUMO

Metazoan replication-dependent histone pre-mRNAs are cleaved at the 3' end by U7 snRNP, an RNA-guided endonuclease that contains U7 snRNA, seven proteins of the Sm ring, FLASH, and four polyadenylation factors: symplekin, CPSF73, CPSF100, and CstF64. A fully recombinant U7 snRNP was recently reconstituted from all 13 components for functional and structural studies and shown to accurately cleave histone pre-mRNAs. Here, we analyzed the activity of recombinant U7 snRNP in more detail. We demonstrate that in addition to cleaving histone pre-mRNAs endonucleolytically, reconstituted U7 snRNP acts as a 5'-3' exonuclease that degrades the downstream product generated from histone pre-mRNAs as a result of the endonucleolytic cleavage. Surprisingly, recombinant U7 snRNP also acts as an endonuclease on single-stranded DNA substrates. All these activities depend on the ability of U7 snRNA to base-pair with the substrate and on the presence of the amino-terminal domain (NTD) of symplekin in either cis or trans, and are abolished by mutations within the catalytic center of CPSF73, or by binding of the NTD to the SSU72 phosphatase of RNA polymerase II. Altogether, our results demonstrate that recombinant U7 snRNP functionally mimics its endogenous counterpart and provide evidence that CPSF73 is both an endonuclease and a 5'-3' exonuclease, consistent with the activity of other members of the ß-CASP family. Our results also raise the intriguing possibility that CPSF73 may be involved in some aspects of DNA metabolism in vivo.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/genética , Endonucleases/genética , Exonucleases/genética , RNA Nuclear Pequeno/genética , Ribonucleoproteína Nuclear Pequena U7/genética , Animais , Histonas/genética , Camundongos , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA/genética
16.
Mol Biol Cell ; 31(14): 1525-1537, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32401666

RESUMO

The histone locus body (HLB) assembles at replication-dependent (RD) histone loci and concentrates factors required for RD histone mRNA biosynthesis. The Drosophila melanogaster genome has a single locus comprised of ∼100 copies of a tandemly arrayed 5-kB repeat unit containing one copy of each of the 5 RD histone genes. To determine sequence elements required for D. melanogaster HLB formation and histone gene expression, we used transgenic gene arrays containing 12 copies of the histone repeat unit that functionally complement loss of the ∼200 endogenous RD histone genes. A 12x histone gene array in which all H3-H4 promoters were replaced with H2a-H2b promoters (12xPR) does not form an HLB or express high levels of RD histone mRNA in the presence of the endogenous histone genes. In contrast, this same transgenic array is active in HLB assembly and RD histone gene expression in the absence of the endogenous RD histone genes and rescues the lethality caused by homozygous deletion of the RD histone locus. The HLB formed in the absence of endogenous RD histone genes on the mutant 12x array contains all known factors present in the wild-type HLB including CLAMP, which normally binds to GAGA repeats in the H3-H4 promoter. These data suggest that multiple protein-protein and/or protein-DNA interactions contribute to HLB formation, and that the large number of endogenous RD histone gene copies sequester available factor(s) from attenuated transgenic arrays, thereby preventing HLB formation and gene expression on these arrays.


Assuntos
Histonas/genética , Histonas/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Genoma/genética , Homozigoto , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Transcrição Gênica/genética
17.
Science ; 367(6478): 700-703, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32029631

RESUMO

The 3'-end processing machinery for metazoan replication-dependent histone precursor messenger RNAs (pre-mRNAs) contains the U7 small nuclear ribonucleoprotein and shares the key cleavage module with the canonical cleavage and polyadenylation machinery. We reconstituted an active human histone pre-mRNA processing machinery using 13 recombinant proteins and two RNAs and determined its structure by cryo-electron microscopy. The overall structure is highly asymmetrical and resembles an amphora with one long handle. We captured the pre-mRNA in the active site of the endonuclease, the 73-kilodalton subunit of the cleavage and polyadenylation specificity factor, poised for cleavage. The endonuclease and the entire cleavage module undergo extensive rearrangements for activation, triggered through the recognition of the duplex between the authentic pre-mRNA and U7 small nuclear RNA (snRNA). Our study also has notable implications for understanding canonical and snRNA 3'-end processing.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/química , Histonas/genética , Clivagem do RNA , Precursores de RNA/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Humanos , Poliadenilação , RNA Nuclear Pequeno/metabolismo , Proteínas Recombinantes , Ribonucleoproteína Nuclear Pequena U7/química
18.
Nucleic Acids Res ; 48(3): 1508-1530, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31819999

RESUMO

In animal cells, replication-dependent histone pre-mRNAs are cleaved at the 3' end by U7 snRNP consisting of two core components: a ∼60-nucleotide U7 snRNA and a ring of seven proteins, with Lsm10 and Lsm11 replacing the spliceosomal SmD1 and SmD2. Lsm11 interacts with FLASH and together they recruit the endonuclease CPSF73 and other polyadenylation factors, forming catalytically active holo U7 snRNP. Here, we assembled core U7 snRNP bound to FLASH from recombinant components and analyzed its appearance by electron microscopy and ability to support histone pre-mRNA processing in the presence of polyadenylation factors from nuclear extracts. We demonstrate that semi-recombinant holo U7 snRNP reconstituted in this manner has the same composition and functional properties as endogenous U7 snRNP, and accurately cleaves histone pre-mRNAs in a reconstituted in vitro processing reaction. We also demonstrate that the U7-specific Sm ring assembles efficiently in vitro on a spliceosomal Sm site but the engineered U7 snRNP is functionally impaired. This approach offers a unique opportunity to study the importance of various regions in the Sm proteins and U7 snRNA in 3' end processing of histone pre-mRNAs.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U7/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Sequência de Aminoácidos/genética , Animais , Núcleo Celular/genética , Drosophila/genética , Histonas/genética , Humanos , Camundongos , Ligação Proteica/genética , Precursores de RNA/genética , Spliceossomos/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética
19.
Methods ; 155: 104-115, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30408609

RESUMO

The half-life of an mRNA is an important parameter contributing to the steady-state level of the mRNA. Rapid changes in mRNA levels can result from decreasing the half-life of an mRNA. Establishing the detailed pathway of mRNA degradation for a particular class of mRNAs requires the ability to isolate mRNA degradation intermediates. High-throughput sequencing provides a method for detecting these intermediates. Here we describe a method for determining the intermediates in 3' to 5' degradation. Characterizing these intermediates requires not only determining the precise 3' end of the molecule to a single nucleotide resolution, but also the ability to detect and characterize any untemplated nucleotides present on the intermediates. We achieve this by ligating a known sequence to all the 3' termini in the cell, and then sequence the 3' termini and the ligated linker to identify any alterations to the genomic reference sequence. We have applied this method to characterize the intermediates in histone mRNA metabolism, allowing us to deduce the pathway of 3' to 5' degradation. This method can potentially be applied to any RNA, and we discuss possible strategies for extending the method to include simultaneous determination of the 3' and 5' end of the same RNA molecule.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Histonas/genética , Oligorribonucleotídeos/análise , RNA Mensageiro/genética , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Pareamento de Bases , Sequência de Bases , Ciclo Celular/genética , Linhagem Celular , DNA Complementar/genética , DNA Complementar/metabolismo , Biblioteca Gênica , Meia-Vida , Histonas/metabolismo , Humanos , Imidazóis/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , RNA/química , RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/estatística & dados numéricos , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-30397106

RESUMO

Metazoan replication-dependent histone mRNAs are the only known cellular mRNAs that are not polyadenylated. Histone mRNAs are present in large amounts only in S-phase cells, and their levels are coordinately regulated with the rate of DNA replication. In mammals, the stemloop at the 3' end of histone mRNA is bound to stemloop binding protein, a protein required for both synthesis and degradation of histone mRNA, and an exonuclease, 3'hExo (ERI1). Histone mRNAs are rapidly degraded when DNA synthesis is inhibited in S-phase cells and at the end of S-phase. Upf1 is also required for rapid degradation of histone mRNA as is the S-phase checkpoint. We report that Smg1 is required for histone mRNA degradation when DNA replication is inhibited, suggesting it is the PI-like kinase that activates Upf1 for histone mRNA degradation. We also show that some mutant Upf1 proteins are recruited to histone mRNAs when DNA replication is inhibited and act as dominant negative factors in histone mRNA degradation. We report that the pathway of rapid histone mRNA degradation when DNA replication is inhibited in S-phase cells that are activating the S-phase checkpoint is similar to the pathway of rapid degradation of histone mRNA at the end of S-phase.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.


Assuntos
Replicação do DNA , Histonas/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Uridina/metabolismo , Células HeLa , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...