Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842262

RESUMO

The integration of nanotechnology with photoredox medicine has led to the emergence of biocompatible semiconducting polymer nanoparticles (SPNs) for the optical modulation of intracellular reactive oxygen species (ROS). However, the need for efficient photoactive materials capable of finely controlling the intracellular redox status with high spatial resolution at a nontoxic light density is still largely unmet. Herein, highly photoelectrochemically efficient photoactive polymer beads are developed. The photoactive material/electrolyte interfacial area is maximized by designing porous semiconducting polymer nanoparticles (PSPNs). PSPNs are synthesized by selective hydrolysis of the polyester segments of nanoparticles made of poly(3-hexylthiophene)-graft-poly(lactic acid) (P3HT-g-PLA). The photocurrent of PSPNs is 4.5-fold higher than that of nonporous P3HT-g-PLA-SPNs, and PSPNs efficiently reduce oxygen in an aqueous environment. PSPNs are internalized within endothelial cells and optically trigger ROS generation with a >1.3-fold concentration increase with regard to nonporous P3HT-SPNs, at a light density as low as a few milliwatts per square centimeter, fully compatible with in vivo, chronic applications.

2.
Adv Sci (Weinh) ; 11(3): e2304303, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37948328

RESUMO

Optical stimulation in the red/near infrared range recently gained increasing interest, as a not-invasive tool to control cardiac cell activity and repair in disease conditions. Translation of this approach to therapy is hampered by scarce efficacy and selectivity. The use of smart biocompatible materials, capable to act as local, NIR-sensitive interfaces with cardiac cells, may represent a valuable solution, capable to overcome these limitations. In this work, a far red-responsive conjugated polymer, namely poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl]] (PCPDTBT) is proposed for the realization of photoactive interfaces with cardiomyocytes derived from pluripotent stem cells (hPSC-CMs). Optical excitation of the polymer turns into effective ionic and electrical modulation of hPSC-CMs, in particular by fastening Ca2+ dynamics, inducing action potential shortening, accelerating the spontaneous beating frequency. The involvement in the phototransduction pathway of Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) and Na+ /Ca2+ exchanger (NCX) is proven by pharmacological assays and is correlated with physical/chemical processes occurring at the polymer surface upon photoexcitation. Very interestingly, an antiarrhythmogenic effect, unequivocally triggered by polymer photoexcitation, is also observed. Overall, red-light excitation of conjugated polymers may represent an unprecedented opportunity for fine control of hPSC-CMs functionality and can be considered as a perspective, noninvasive approach to treat arrhythmias.


Assuntos
Miócitos Cardíacos , Células-Tronco Pluripotentes , Polímeros/farmacologia
3.
ACS Appl Mater Interfaces ; 15(30): 35973-35985, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37467460

RESUMO

The design of soft and nanometer-scale photoelectrodes able to stimulate and promote the intracellular concentration of reactive oxygen species (ROS) is searched for redox medicine applications. In this work, we show semiconducting polymer porous thin films with an enhanced photoelectrochemical generation of ROS in human umbilical vein endothelial cells (HUVECs). To achieve that aim, we synthesized graft copolymers, made of poly(3-hexylthiophene) (P3HT) and degradable poly(lactic acid) (PLA) segments, P3HT-g-PLA. In a second step, the hydrolysis of sacrificial PLA leads to nanometer-scale porous P3HT thin films. The pore sizes in the nm regime (220-1200 nm) were controlled by the copolymer composition and the structural arrangement of the copolymers during the film formation, as determined by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The porous P3HT thin films showed enhanced photofaradaic behavior, generating a higher concentration of ROS in comparison to non-porous P3HT films, as determined by scanning electrochemical microscopy (SECM) measurements. The exogenous ROS production was able to modulate the intracellular ROS concentration in HUVECs at non-toxic levels, thus affecting the physiological functions of cells. Results presented in this work provide an important step forward in the development of new tools for precise, on-demand, and non-invasive modulation of intracellular ROS species and may be potentially extended to many other physiological or pathological cell models.


Assuntos
Nanoporos , Polímeros , Humanos , Polímeros/química , Espécies Reativas de Oxigênio , Células Endoteliais , Poliésteres
4.
RSC Adv ; 13(1): 251-263, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36605647

RESUMO

Electronic noses (e-noses) have received considerable interest in the past decade as they can match the emerging needs of modern society such as environmental monitoring, health screening, and food quality tracking. For practical applications of e-noses, it is necessary to collect large amounts of data from an array of sensing devices that can detect interactions with molecules reliably and analyze them via pattern recognition. The use of graphene (Gr)-based arrays of chemiresistors in e-noses is still virtually missing, though recent reports on Gr-based chemiresistors have disclosed high sensing performances upon functionalization of the pristine layer, opening up the possibility of being implemented into e-noses. In this work, with the aim of creating a robust and chemically stable interface that combines the chemical properties of metal phthalocyanines (M-Pc, M = Fe, Co, Ni, Zn) with the superior transport properties of Gr, an array of Gr-based chemiresistor sensors functionalized with drop-cast M-Pc thin layers has been developed. The sensing capability of the array was tested towards biomarkers for breathomics application, with a focus on ammonia (NH3). Exposure to NH3 has been carried out drawing the calibration curve and estimating the detection limit for all the sensors. The discrimination capability of the array has then been tested, carrying out exposure to several gases (hydrogen sulfide, acetone, ethanol, 2-propanol, water vapour and benzene) and analysing the data through principal component analysis (PCA). The PCA pattern recognition results show that the developed e-nose is able to discriminate all the tested gases through the synergic contribution of all sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...