Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 61(3): 492-504, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738419

RESUMO

Festuca arundinacea is a model to work on the mechanisms of drought resistance in grasses. The crucial components of that resistance still remain not fully recognized. It was suggested that deep root system could be a crucial trait for drought avoidance strategy but the other components of root performance under water deficit have not paid much attention of scientists. In this study, two genotypes of F. arundinacea with a different ability to withstand soil water deficit were selected to perform comprehensive research, including analysis of root architecture, phytohormones, proteome, primary metabolome and lipidome under progressive stress conditions, followed by a rewatering period. The experiments were performed in tubes, thus enabling undisturbed development of root systems. We demonstrated that long roots are not sufficient to perfectly avoid drought damage in F. arundinacea and to withstand adverse environmental conditions without a disturbed cellular metabolism (with respect to leaf relative water potential and cellular membrane integrity). Furthermore, we proved that metabolic performance of roots is as crucial as its architecture under water deficit, to cope with drought stress via avoidance, tolerance and regeneration strategies. We believe that the presented studies could be a good reference for the other, more applied experiments, in closely related species.


Assuntos
Adaptação Fisiológica/fisiologia , Secas , Festuca/fisiologia , Raízes de Plantas/metabolismo , Metaboloma , Folhas de Planta/metabolismo , Poaceae/metabolismo , Proteoma/metabolismo , Solo , Água/metabolismo
2.
Plant Sci ; 283: 211-223, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128691

RESUMO

Drought resistance is a crucial attribute of plants and to properly decipher its mechanisms, a valuable plant model is required. Lolium multiflorum is a forage grass characterized by a low level of abiotic stress resistance, whereas Festuca arundinacea is recognized as a species with drought resistance, including both stress avoidance and tolerance strategies. These two species can be crossed with each other. Two closely related L. multiflorum/F. arundinacea introgression forms with distinct levels of field drought resistance were involved, thus enabling the dissection of this complex trait into its crucial components. The processes occurring in roots were shown to be the most significant for the expression of drought resistance. Thus, the analysis was focused on the root architecture and the accumulation of selected hormones, primary metabolites and glycerolipids in roots. The introgression form, with a higher resistance to field water deficit was characterized by a deeper soil penetration by its roots, and it had a higher accumulation level of primary metabolites, including well recognized osmoprotectants, such as proline, sucrose or maltose, and an increase in phosphatidylcholine to phosphatidylethanolamine ratio compared to the low resistant form. A comprehensive model of root performance under water deficit conditions is presented here for the first time for the grass species of the Lolium-Festuca complex.


Assuntos
Festuca/anatomia & histologia , Lolium/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Desidratação , Festuca/crescimento & desenvolvimento , Festuca/metabolismo , Metabolismo dos Lipídeos , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Água/metabolismo
3.
Gene ; 687: 166-172, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445023

RESUMO

Plant aquaporins constitute a large family of proteins involved in facilitating the transport of water and small neutral molecules across biological membranes. In higher plants they are divided into several sub-families, depending on membrane-type localization and permeability to specific solutes. They are abundantly expressed in the majority of plant organs and tissues, and play a function in primary biological processes. Many studies revealed the significant role of aquaporins in acquiring abiotic stresses' tolerance. This review focuses on aquaporins belonging to PIPs sub-family that are permeable to water and/or carbon dioxide. Isoforms transporting water are involved in hydraulic conductance regulation in the leaves and roots, whereas those transporting carbon dioxide control stomatal and mesophyll conductance in the leaves. Changes in PIP aquaporins abundance/activity in stress conditions allow to maintain the water balance and photosynthesis adjustment. Broad analyses showed that tight control between water and carbon dioxide supplementation mediated by aquaporins influences plant productivity, especially in stress conditions. Involvement of aquaporins in adaptation strategies to dehydrative stresses in different plant species are discussed in this review.


Assuntos
Adaptação Fisiológica , Aquaporinas/metabolismo , Fotossíntese , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Estresse Fisiológico , Água/química , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas/genética
4.
Plant Physiol Biochem ; 123: 43-53, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29223067

RESUMO

The potential of resistance to Microdochium nivale is still not recognized for numerous plant species. The forage grasses of Lolium-Festuca complex are important for grass-biomass production in the temperate regions. Lolium multiflorum is a grass with a high forage quality and productivity but also a relatively low resistance to M. nivale. On the contrary, F. arundinacea has a higher potential of resistance but simultaneously a significantly lower forage quality. These two species cross with each other and the intergeneric hybrids possess complementary characters of both genera. Herein, for the first time, we perform the research on L. multiflorum/F. arundinacea introgression forms to decipher mechanisms of resistance to M. nivale in that group of plants. Two forms with distinct levels of resistance were used as models in cytogenetic and biochemical studies. The resistant plant was shown to be a tetraploid with 28 L. multiflorum chromosomes, including one with three F. arundinacea introgressions. The susceptible introgression form revealed the unbalanced genomic structure and only 25 chromosomes. Twenty four chromosomes were shown to be L. multiflorum chromosomes, including one chromosome with F. arundinacea segment. One Festuca chromosome with additional two interstitial F. arundinacea segments, was also revealed in the susceptible form. The selected introgression forms differed in the accumulation profiles of total soluble carbohydrates, phytohormones, and phenolics in the leaf and crown tissue under the control and infection conditions. The higher amount of carbohydrates and salicylic acid in the leaves and crowns as well as a lower amount of abscisic acid in both studied organs and jasmonic acid in the crowns, were shown to be crucial for the expression of resistance to M. nivale in the analyzed hybrids.


Assuntos
Ascomicetos , Cromossomos de Plantas/genética , Resistência à Doença/genética , Festuca , Lolium , Doenças das Plantas , Festuca/genética , Festuca/microbiologia , Lolium/genética , Lolium/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA