Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 12(2): 801-820, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256948

RESUMO

Pharmacological activation of the xenobiotic-sensing nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) is well-known to increase drug metabolism and reduce inflammation. Little is known regarding their physiological functions on the gut microbiome. In this study, we discovered bivalent hormetic functions of PXR/CAR modulating the richness of the gut microbiome using genetically engineered mice. The absence of PXR or CAR increased microbial richness, and absence of both receptors synergistically increased microbial richness. PXR and CAR deficiency increased the pro-inflammatory bacteria Helicobacteraceae and Helicobacter. Deficiency in both PXR and CAR increased the relative abundance of Lactobacillus, which has bile salt hydrolase activity, corresponding to decreased primary taurine-conjugated bile acids (BAs) in feces, which may lead to higher internal burden of taurine and unconjugated BAs, both of which are linked to inflammation, oxidative stress, and cytotoxicity. The basal effect of PXR/CAR on the gut microbiome was distinct from pharmacological and toxicological activation of these receptors. Common PXR/CAR-targeted bacteria were identified, the majority of which were suppressed by these receptors. hPXR-TG mice had a distinct microbial profile as compared to wild-type mice. This study is the first to unveil the basal functions of PXR and CAR on the gut microbiome.

2.
Hepatol Commun ; 6(4): 780-794, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34816633

RESUMO

Proprotein convertase subtilisin/kexin type 9 (Pcsk9) binds to hepatic low-density lipoprotein receptor (LDLR) and induces its internalization and degradation. Pcsk9 inhibition increases LDLR expression by hepatocytes, which causes increased uptake of circulating LDL, thereby reducing plasma LDL-cholesterol. However, by increasing the uptake of LDL by the liver, Pcsk9 inhibition increases the exposure of the liver to cholesterol, which may result in higher risk of steatohepatitis and ever carcinogenesis. We compared Pcsk9-/- knockout (KO) mice and appropriate wild-type (WT) controls of the same strain assigned to a high-fat (15%, wt/wt) diet for 9 months supplemented with 0.25%, 0.5%, or 0.75% dietary cholesterol. Pcsk9 KO mice on a high-fat, high-cholesterol diet exhibited higher levels of hepatic free cholesterol loading and hepatic cholesterol crystallization than their WT counterparts. Pcsk9 KO mice developed crown-like structures of macrophages surrounding cholesterol crystal-containing lipid droplets and hepatocytes, exhibited higher levels of apoptosis, and developed significantly more hepatic inflammation and fibrosis consistent with fibrosing steatohepatitis, including 5-fold and 11-fold more fibrosis at 0.5% and 0.75% dietary cholesterol, respectively. When injected with diethylnitrosamine, a hepatic carcinogen, early-in-life Pcsk9 KO mice were more likely to develop liver cancer than WT mice. Conclusion: Pcsk9 KO mice on high-cholesterol diets developed increased hepatic free cholesterol and cholesterol crystals and fibrosing steatohepatitis with a higher predisposition to liver cancer compared with WT mice. Future studies should evaluate whether patients on long-term treatment with anti-PSCK9 monoclonal antibodies are at increased risk of hepatic steatosis, steatohepatitis or liver cancer, while accounting for concurrent use of statins.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Pró-Proteína Convertase 9 , Animais , Carcinogênese , Colesterol , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertases , Serina Endopeptidases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...