Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 240(6): 2288-2297, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37845824

RESUMO

Controlled experiments at the level of individual plants show that legume species use different strategies for the regulation of symbiotic dinitrogen fixation in response to nitrogen availability. These strategies were suggested to improve legume fitness in the context of the plant community, although rarely studied at this level. We evaluated how nitrogen availability and conspecific vs heterospecific interactions influenced the strategy of regulation of nitrogen fixation. We grew two species of herbaceous legumes representing two different strategies of regulation without interaction, under treatments of deficient and sufficient nitrogen availability, with conspecific or heterospecific interaction. We found that Hymenocarpus circinnatus maintained a facultative strategy of downregulating nitrogen fixation when nitrogen was available under both con- and heterospecific interactions, as was also found for this species when grown alone. Vicia palaestina also downregulated nitrogen fixation under both con- and heterospecific interactions but did not regulate fixation when grown alone. Our results showed that under nitrogen limitation, interaction with a neighboring plant reduced fitness, reflecting a competitive effect. Our findings suggest that when interacting with other plants, downregulation of nitrogen fixation is more likely, therefore reducing the energetic cost of fixation, and improving plant performance in competitive ecological communities, especially when nitrogen is available.


Assuntos
Fabaceae , Fixação de Nitrogênio , Regulação para Baixo , Fabaceae/fisiologia , Simbiose , Nitrogênio/metabolismo
2.
Plant Cell ; 36(1): 174-193, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37818992

RESUMO

The epidermal cells of petunia (Petunia × hybrida) flowers are the main site of volatile emission. However, the mechanisms underlying the release of volatiles into the environment are still being explored. Here, using cell-layer-specific transcriptomic analysis, reverse genetics by virus-induced gene silencing and clustered regularly interspaced short palindromic repeat (CRISPR), and metabolomics, we identified EPIDERMIS VOLATILE EMISSION REGULATOR (EVER)-a petal adaxial epidermis-specific MYB activator that affects the emission of volatiles. To generate ever knockout lines, we developed a viral-based CRISPR/Cas9 system for efficient gene editing in plants. These knockout lines, together with transient-suppression assays, revealed EVER's involvement in the repression of low-vapor-pressure volatiles. Internal pools and annotated scent-related genes involved in volatile production and emission were not affected by EVER. RNA-Seq analyses of petals of ever knockout lines and EVER-overexpressing flowers revealed enrichment in wax-related biosynthesis genes. Liquid chromatography/gas chromatography-MS analyses of petal epicuticular waxes revealed substantial reductions in wax loads in ever petals, particularly of monomers of fatty acids and wax esters. These results implicate EVER in the emission of volatiles by fine-tuning the composition of petal epicuticular waxes. We reveal a petunia MYB regulator that interlinks epicuticular wax composition and volatile emission, thus unraveling a regulatory layer in the scent-emission machinery in petunia flowers.


Assuntos
Petunia , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Petunia/genética , Petunia/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Ceras , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Physiol ; 192(1): 409-425, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36760164

RESUMO

Emission of scent volatiles by flowers is important for successful pollination and consequently, reproduction. Petunia (Petunia hybrida) floral scent is formed mainly by volatile products of the phenylpropanoid pathway. We identified and characterized a regulator of petunia scent production: the GRAS protein PHENYLPROPANOID EMISSION-REGULATING SCARECROW-LIKE (PES). Its expression increased in petals during bud development and was highest in open flowers. Overexpression of PES increased the production of floral volatiles, while its suppression resulted in scent reduction. We showed that PES upregulates the expression of genes encoding enzymes of the phenylpropanoid and shikimate pathways in petals, and of the core regulator of volatile biosynthesis ODORANT1 by activating its promoter. PES is an ortholog of Arabidopsis (Arabidopsis thaliana) PHYTOCHROME A SIGNAL TRANSDUCTION 1, involved in physiological responses to far-red (FR) light. Analyses of the effect of nonphotosynthetic irradiation (low-intensity FR light) on petunia floral volatiles revealed FR light as a scent-activating factor. While PHYTOCHROME A regulated scent-related gene expression and floral scent production under FR light, the influence of PES on volatile production was not limited by FR light conditions.


Assuntos
Arabidopsis , Petunia , Petunia/genética , Petunia/metabolismo , Odorantes , Fitocromo A/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flores
4.
Plant J ; 106(6): 1746-1758, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33837586

RESUMO

Floral guides are patterned cues that direct the pollinator to the plant reproductive organs. The spatial distribution of showy visual and olfactory traits allows efficient plant-pollinator interactions. Data on the mechanisms underlying floral volatile patterns or their interactions with pollinators are lacking. Here we characterize the spatial emission patterns of volatiles from the corolla of the model plant Petunia × hybrida and reveal the ability of honeybees to distinguish these patterns. Along the adaxial epidermis, in correlation with cell density, the petal base adjacent to reproductive organs emitted significantly higher levels of volatiles than the distal petal rim. Volatile emission could also be differentiated between the two epidermal surfaces: emission from the adaxial side was significantly higher than that from the abaxial side. Similar emission patterns were also observed in other petunias, Dianthus caryophyllus (carnation) and Argyranthemum frutescens (Marguerite daisy). Analyses of transcripts involved in volatile production/emission revealed lower levels of the plasma-membrane transporter ABCG1 in the abaxial versus adaxial epidermis. Transient overexpression of ABCG1 enhanced emission from the abaxial epidermis to the level of the adaxial epidermis, suggesting its involvement in spatial emission patterns in the epidermal layers. Proboscis extension response experiments showed that differences in emission levels along the adaxial epidermis, that is, petal base versus rim, detected by GC-MS are also discernible by honeybees.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Abelhas/fisiologia , Flores/química , Odorantes/análise , Petunia/fisiologia , Proteínas de Plantas/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Flores/metabolismo , Proteínas de Plantas/genética , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
5.
New Phytol ; 227(2): 365-375, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32175592

RESUMO

Leaf nitrogen concentration often is higher in leguminous plants, which associate with dinitrogen-fixing bacteria, compared with nonlegume plants. However, the range of nitrogen concentrations in legumes is wide, likely related to the range of nitrogen fixation strategies. We evaluated how carbon and nitrogen allocation to roots, stems and leaves is influenced by the type of strategy of nitrogen fixation regulation. We grew herbaceous annual legumes (Medicago truncatula, Hymenocarpos circinnatus and Vicia palaestina) under two nitrogen availability treatments (none/sufficient), with and without bacterial inoculation. We found facultative downregulation of the rate of nitrogen fixation when nitrogen was available in H. circinnatus, and an obligate similar fixation rate in both nitrogen treatments in M. truncatula and V. palaestina. Uninoculated plants invested more biomass in roots and contained lower nitrogen concentrations. However, nitrogen concentration in the entire plant and in the leaves was lower and more plastic in the species with a facultative fixation strategy, whereas species with an obligate fixation strategy also maintained high nitrogen concentrations. Our results suggest a suite of functional traits associated with the strategies of allocation and symbiotic nitrogen fixation. This suite of traits probably shapes successional and functional niches of different leguminous species in specious plant communities.


Assuntos
Medicago truncatula , Nitrogênio , Fixação de Nitrogênio , Raízes de Plantas , Nódulos Radiculares de Plantas , Simbiose
6.
Front Plant Sci ; 8: 1898, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163617

RESUMO

Floral scent has been studied extensively in the model plant Petunia. However, little is known about the intracellular fate of scent compounds. Here, we characterize the glycosylation of phenylpropanoid scent compounds in Petunia x hybrida. This modification reduces scent compounds' volatility, reactivity, and autotoxicity while increasing their water-solubility. Gas chromatography-mass spectrometry (GC-MS) analyses revealed that flowers of petunia cultivars accumulate substantial amounts of glycosylated scent compounds and that their increasing level parallels flower development. In contrast to the pool of accumulated aglycones, which drops considerably at the beginning of the light period, the collective pool of glycosides starts to increase at that time and does not decrease thereafter. The glycoside pool is dynamic and is generated or catabolized during peak scent emission, as inferred from phenylalanine isotope-feeding experiments. Using several approaches, we show that phenylpropanoid scent compounds are stored as glycosides in the vacuoles of petal cells: ectopic expression of Aspergillus niger ß-glucosidase-1 targeted to the vacuole resulted in decreased glycoside accumulation; GC-MS analysis of intact vacuoles isolated from petal protoplasts revealed the presence of glycosylated scent compounds. Accumulation of glycosides in the vacuoles seems to be a common mechanism for phenylpropanoid metabolites.

7.
New Phytol ; 215(1): 411-422, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28262954

RESUMO

Emission of volatiles at advanced stages of flower development is a strategy used by plants to lure pollinators to the flower. We reveal that GA negatively regulates floral scent production in petunia. We used Agrobacterium-mediated transient expression of GA-20ox in petunia flowers and a virus-induced gene silencing approach to knock down DELLA expression, measured volatile emission, internal pool sizes and GA levels by GC-MS or LC-MS/MS, and analyzed transcript levels of scent-related phenylpropanoid-pathway genes. We show that GA has a negative effect on the concentrations of accumulated and emitted phenylpropanoid volatiles in petunia flowers; this effect is exerted through transcriptional/post-transcriptional downregulation of regulatory and biosynthetic scent-related genes. Both overexpression of GA20-ox, a GA-biosynthesis gene, and suppression of DELLA, a repressor of GA-signal transduction, corroborated GA's negative regulation of floral scent. We present a model in which GA-dependent timing of the sequential activation of different branches of the phenylpropanoid pathway during flower development may represent a link between the showy traits controlling pollinator attraction, namely color and scent.


Assuntos
Giberelinas/farmacologia , Petunia/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Flores/fisiologia , Inativação Gênica , Giberelinas/metabolismo , Giberelinas/fisiologia , Transdução de Sinais
8.
Proc Natl Acad Sci U S A ; 112(51): 15761-6, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26644556

RESUMO

Deficiency in essential omega-3 polyunsaturated fatty acids (PUFAs), particularly the long-chain form of docosahexaenoic acid (DHA), has been linked to health problems in mammals, including many mental disorders and reduced cognitive performance. Insects have very low long-chain PUFA concentrations, and the effect of omega-3 deficiency on cognition in insects has not been studied. We show a low omega-6:3 ratio of pollen collected by honey bee colonies in heterogenous landscapes and in many hand-collected pollens that we analyzed. We identified Eucalyptus as an important bee-forage plant particularly poor in omega-3 and high in the omega-6:3 ratio. We tested the effect of dietary omega-3 deficiency on olfactory and tactile associative learning of the economically highly valued honey bee. Bees fed either of two omega-3-poor diets, or Eucalyptus pollen, showed greatly reduced learning abilities in conditioned proboscis-extension assays compared with those fed omega-3-rich diets, or omega-3-rich pollen mixture. The effect on performance was not due to reduced sucrose sensitivity. Omega-3 deficiency also led to smaller hypopharyngeal glands. Bee brains contained high omega-3 concentrations, which were only slightly affected by diet, suggesting additional peripheral effects on learning. The shift from a low to high omega-6:3 ratio in the Western human diet is deemed a primary cause of many diseases and reduced mental health. A similar shift seems to be occurring in bee forage, possibly an important factor in colony declines. Our study shows the detrimental effect on cognitive performance of omega-3 deficiency in a nonmammal.


Assuntos
Abelhas/fisiologia , Ácidos Graxos Ômega-3/fisiologia , Aprendizagem , Animais , Química Encefálica , Cognição , Condicionamento Clássico , Ácidos Graxos/análise , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-6/análise , Pólen/química
9.
New Phytol ; 208(3): 708-14, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26111005

RESUMO

The mechanism underlying the emission of phenylpropanoid volatiles is poorly understood. Here, we reveal the involvement of PH4, a petunia MYB-R2R3 transcription factor previously studied for its role in vacuolar acidification, in floral volatile emission. We used the virus-induced gene silencing (VIGS) approach to knock down PH4 expression in petunia, measured volatile emission and internal pool sizes by GC-MS, and analyzed transcript abundances of scent-related phenylpropanoid genes in flowers. Silencing of PH4 resulted in a marked decrease in floral phenylpropanoid volatile emission, with a concurrent increase in internal pool levels. Expression of scent-related phenylpropanoid genes was not affected. To identify putative scent-related targets of PH4, we silenced PH5, a tonoplast-localized H(+) -ATPase that maintains vacuolar pH homeostasis. Suppression of PH5 did not yield the reduced-emission phenotype, suggesting that PH4 does not operate in the context of floral scent through regulation of vacuolar pH. We conclude that PH4 is a key floral regulator that integrates volatile production and emission processes and interconnects two essential floral traits - color and scent.


Assuntos
Flores/metabolismo , Petunia/metabolismo , Pigmentação/fisiologia , Fatores de Transcrição/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Inativação Gênica , Proteínas de Plantas/metabolismo
10.
Plant Cell Environ ; 38(7): 1333-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25402319

RESUMO

Increasing temperatures due to changing global climate are interfering with plant-pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography-mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid-based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down-regulation of scent-related structural gene expression from both phenylpropanoid and shikimate pathways, and up-regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic 'Blue Spark' plants overexpressing CaMV 35S-driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long-term high-temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up-regulation of transcription might negate the adverse effects of temperature on scent production.


Assuntos
Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Petunia/metabolismo , Fatores de Transcrição/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Antocianinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação para Baixo , Flores/genética , Flores/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica , Temperatura Alta , Proteínas Associadas a Pancreatite , Petunia/genética , Petunia/crescimento & desenvolvimento , Fenótipo , Plantas Geneticamente Modificadas , Propanóis/metabolismo , Ácido Chiquímico/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional , Transcriptoma , Regulação para Cima
11.
J Exp Bot ; 64(14): 4441-52, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24006429

RESUMO

Tomato (Solanum lycopersicum) fruit contains significant amounts of bioactive compounds, particularly multiple classes of specialized metabolites. Enhancing the synthesis and accumulation of these substances, specifically in fruits, are central for improving tomato fruit quality (e.g. flavour and aroma) and could aid in elucidate pathways of specialized metabolism. To promote the production of specialized metabolites in tomato fruit, this work expressed under a fruit ripening-specific promoter, E8, a bacterial AroG gene encoding a 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS), which is feedback-insensitive to phenylalanine inhibition. DAHPS, the first enzyme of the shikimate pathway, links between the primary and specialized metabolism derived from aromatic amino acids. AroG expression influenced the levels of number of primary metabolites, such as shikimic acid and aromatic amino acids, as well as multiple volatile and non-volatile phenylpropanoids specialized metabolites and carotenoids. An organoleptic test, performed by trained panellists, suggested that the ripe AroG-expressing tomato fruits had a preferred floral aroma compare with fruits of the wild-type line. These results imply that fruit-specific manipulation of the conversion of primary to specialized metabolism is an attractive approach for improving fruit aroma and flavour qualities as well as discovering novel fruit-specialized metabolites.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Escherichia coli/enzimologia , Retroalimentação Fisiológica , Frutas/enzimologia , Metaboloma , Odorantes , Ácido Chiquímico/metabolismo , Solanum lycopersicum/enzimologia , Aminoácidos Aromáticos/biossíntese , Frutas/genética , Frutas/crescimento & desenvolvimento , Solanum lycopersicum/genética , Redes e Vias Metabólicas , Plantas Geneticamente Modificadas , Compostos Orgânicos Voláteis/metabolismo
12.
New Phytol ; 195(2): 335-345, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22548501

RESUMO

• Floral scent is a complex trait of biological and applied significance. To evaluate whether scent production originating from diverse metabolic pathways (e.g. phenylpropanoids and isoprenoids) can be affected by transcriptional regulators, Arabidopsis PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) transcription factor was introduced into Rosa hybrida. • Color and scent profiles of PAP1-transgenic and control (ß-glucuronidase-expressing) rose flowers and the expression of key genes involved in the production of secondary metabolites were analyzed. To evaluate the significance of the scent modification, olfactory trials were conducted with both humans and honeybees. • In addition to increased levels of phenylpropanoid-derived color and scent compounds when compared with control flowers, PAP1-transgenic rose lines also emitted up to 6.5 times higher levels of terpenoid scent compounds. Olfactory assay revealed that bees and humans could discriminate between the floral scents of PAP1-transgenic and control flowers. • The increase in volatile production in PAP1 transgenes was not caused solely by transcriptional activation of their respective biosynthetic genes, but probably also resulted from enhanced metabolic flux in both the phenylpropanoid and isoprenoid pathways. The mechanism(s) governing the interactions in these metabolic pathways that are responsible for the production of specialized metabolites remains to be elucidated.


Assuntos
Flores/metabolismo , Odorantes , Proteínas de Plantas/metabolismo , Propanóis/metabolismo , Rosa/metabolismo , Terpenos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Antocianinas/metabolismo , Abelhas/fisiologia , Vias Biossintéticas/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Humanos , Proteínas Associadas a Pancreatite , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Rosa/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Compostos Orgânicos Voláteis/análise
13.
Plant Cell ; 24(12): 5089-105, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23275577

RESUMO

Flower scent is a highly dynamic trait, under developmental, spatial, and diurnal regulation. The mechanism governing scent production is only beginning to be unraveled. In petunia (Petunia hybrida), EMISSION OF BENZENOIDS II (EOBII) controls transcription of both the shikimate pathway-regulating MYB factor ODORANT1 (ODO1) and phenylpropanoid scent-related structural genes. A promoter-activation screen identified an R2R3-MYB-like regulatory factor of phenylpropanoid volatile biosynthesis acting downstream of EOBII, designated EOBI. EOBI silencing led to downregulation of ODO1 and numerous structural scent-related genes from both the shikimate and phenylpropanoid pathways. The ability of EOBI to directly activate ODO1, as revealed by electrophoretic mobility shift assay and yeast one-hybrid analysis, place EOBI upstream of ODO1 in regulating substrate availability for volatile biosynthesis. Interestingly, ODO1-silenced transgenic petunia flowers accumulated higher EOBI transcript levels than controls, suggesting a complex feedback loop between these regulatory factors. The accumulation pattern of EOBI transcript relative to EOBII and ODO1, and the effect of up/downregulation of EOBII on transcript levels of EOBI and ODO1, further support these factors' hierarchical relationships. The dependence of scent production on EOBI expression and its direct interaction with both regulatory and structural genes provide evidence for EOBI's wide-ranging involvement in the production of floral volatiles.


Assuntos
Odorantes , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Petunia/genética , Proteínas de Plantas/genética
14.
Metab Eng ; 13(5): 474-81, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21601648

RESUMO

The biologically and commercially important terpenoids are a large and diverse class of natural products that are targets of metabolic engineering. However, in the context of metabolic engineering, the otherwise well-documented spatial subcellular arrangement of metabolic enzyme complexes has been largely overlooked. To boost production of plant sesquiterpenes in yeast, we enhanced flux in the mevalonic acid pathway toward farnesyl diphosphate (FDP) accumulation, and evaluated the possibility of harnessing the mitochondria as an alternative to the cytosol for metabolic engineering. Overall, we achieved 8- and 20-fold improvement in the production of valencene and amorphadiene, respectively, in yeast co-engineered with a truncated and deregulated HMG1, mitochondrion-targeted heterologous FDP synthase and a mitochondrion-targeted sesquiterpene synthase, i.e. valencene or amorphadiene synthase. The prospect of harnessing different subcellular compartments opens new and intriguing possibilities for the metabolic engineering of pathways leading to valuable natural compounds.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis , Ligases/biossíntese , Mitocôndrias/enzimologia , Organismos Geneticamente Modificados/metabolismo , Saccharomyces cerevisiae/enzimologia , Terpenos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ligases/genética , Mitocôndrias/genética , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
15.
Plant Cell ; 22(6): 1961-76, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20543029

RESUMO

Floral scent, which is determined by a complex mixture of low molecular weight volatile molecules, plays a major role in the plant's life cycle. Phenylpropanoid volatiles are the main determinants of floral scent in petunia (Petunia hybrida). A screen using virus-induced gene silencing for regulators of scent production in petunia flowers yielded a novel R2R3-MYB-like regulatory factor of phenylpropanoid volatile biosynthesis, EMISSION OF BENZENOIDS II (EOBII). This factor was localized to the nucleus and its expression was found to be flower specific and temporally and spatially associated with scent production/emission. Suppression of EOBII expression led to significant reduction in the levels of volatiles accumulating in and emitted by flowers, such as benzaldehyde, phenylethyl alcohol, benzylbenzoate, and isoeugenol. Up/downregulation of EOBII affected transcript levels of several biosynthetic floral scent-related genes encoding enzymes from the phenylpropanoid pathway that are directly involved in the production of these volatiles and enzymes from the shikimate pathway that determine substrate availability. Due to its coordinated wide-ranging effect on the production of floral volatiles, and its lack of effect on anthocyanin production, a central regulatory role is proposed for EOBII in the biosynthesis of phenylpropanoid volatiles.


Assuntos
Flores/química , Odorantes , Petunia/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Benzaldeídos/metabolismo , Benzoatos/metabolismo , Clonagem Molecular , Eugenol/análogos & derivados , Eugenol/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Petunia/metabolismo , Álcool Feniletílico/metabolismo , Proteínas de Plantas/genética , RNA de Plantas/genética , Alinhamento de Sequência , Fatores de Transcrição/genética , Volatilização
16.
Plant Mol Biol ; 72(3): 235-45, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19882107

RESUMO

Rose flowers, like flowers and fruits of many other plants, produce and emit the aromatic volatiles 2-phenylacetaldehyde (PAA) and 2-phenylethylalchohol (PEA) which have a distinctive flowery/rose-like scent. Previous studies in rose have shown that, similar to petunia flowers, PAA is formed from L: -phenylalanine via pyridoxal-5'-phosphate-dependent L: -aromatic amino acid decarboxylase. Here we demonstrate the use of a Saccharomyces cerevisiae aro10 mutant to functionally characterize a Rosa hybrida cv. Fragrance Cloud sequence (RhPAAS) homologous to petunia phenylacetaldehyde synthase (PhPAAS). Volatile headspace analysis of the aro10 knockout strain showed that it produces up to eight times less PAA and PEA than the WT. Expression of RhPAAS in aro10 complemented the yeast's mutant phenotype and elevated PAA levels, similar to petunia PhPAAS. PEA production levels were also enhanced in both aro10 and WT strains transformed with RhPAAS, implying an application for metabolic engineering of PEA biosynthesis in yeast. Characterization of spatial and temporal RhPAAS transcript accumulation in rose revealed it to be specific to floral tissues, peaking in mature flowers, i.e., coinciding with floral scent production and essentially identical to other rose scent-related genes. RhPAAS transcript, as well as PAA and PEA production in flowers, displayed a daily rhythmic behavior, reaching peak levels during the late afternoon hours. Examination of oscillation of RhPAAS transcript levels under free-running conditions suggested involvement of the endogenous clock in the regulation of RhPAAS expression in rose flowers.


Assuntos
Proteínas de Plantas/genética , Rosa/genética , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Ritmo Circadiano , Expressão Gênica , Teste de Complementação Genética , Odorantes , Óleos Voláteis/metabolismo , Álcool Feniletílico/metabolismo , Proteínas de Plantas/fisiologia , RNA Mensageiro/metabolismo , Rosa/enzimologia , Rosa/metabolismo , Saccharomyces cerevisiae/genética
17.
Plant Biotechnol J ; 6(4): 403-15, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18346094

RESUMO

The phenylpropanoid pathway gives rise to metabolites that determine floral colour and fragrance. These metabolites are one of the main means used by plants to attract pollinators, thereby ensuring plant survival. A lack of knowledge about factors regulating scent production has prevented the successful enhancement of volatile phenylpropanoid production in flowers. In this study, the Production of Anthocyanin Pigment1 (Pap1) Myb transcription factor from Arabidopsis thaliana, known to regulate the production of non-volatile phenylpropanoids, including anthocyanins, was stably introduced into Petunia hybrida. In addition to an increase in pigmentation, Pap1-transgenic petunia flowers demonstrated an increase of up to tenfold in the production of volatile phenylpropanoid/benzenoid compounds. The dramatic increase in volatile production corresponded to the native nocturnal rhythms of volatile production in petunia. The application of phenylalanine to Pap1-transgenic flowers led to an increase in the otherwise negligible levels of volatiles emitted during the day to nocturnal levels. On the basis of gene expression profiling and the levels of pathway intermediates, it is proposed that both increased metabolic flux and transcriptional activation of scent and colour genes underlie the enhancement of petunia flower colour and scent production by Pap1. The co-ordinated regulation of metabolic steps within or between pathways involved in vital plant functions, as shown here for two showy traits determining plant-pollinator interactions, provides a clear advantage for plant survival. The use of a regulatory factor that activates scent production creates a new biotechnological strategy for the metabolic architecture of fragrance, leading to the creation of novel genetic variability for breeding purposes.


Assuntos
Antocianinas/metabolismo , Cor , Flores/metabolismo , Odorantes , Petunia/metabolismo , Fatores de Transcrição/metabolismo , Antocianinas/genética , Proteínas de Arabidopsis , Ritmo Circadiano , Flores/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Associadas a Pancreatite , Petunia/genética , Fenilalanina , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
18.
Plant Physiol ; 145(4): 1241-50, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17720754

RESUMO

Floral fragrance is responsible for attracting pollinators as well as repelling pathogens and pests. As such, it is of immense biological importance. Molecular dissection of the mechanisms underlying scent production would benefit from the use of model plant systems with big floral organs that generate an array of volatiles and that are amenable to methods of forward and reverse genetics. One candidate is petunia (Petunia hybrida), which has emerged as a convenient model system, and both RNAi and overexpression approaches using transgenes have been harnessed for the study of floral volatiles. Virus-induced gene silencing (VIGS) is characterized by a simple inoculation procedure and rapid results relative to transgenesis. Here, we demonstrate the applicability of the tobacco rattle virus-based VIGS system to studies of floral scent. Suppression of the anthocyanin pathway via chalcone synthase silencing was used as a reporter, allowing easy visual identification of anthocyaninless silenced flowers/tissues with no effect on the level of volatile emissions. Use of tobacco rattle virus constructs containing target genes involved in phenylpropanoid volatile production, fused to the chalcone synthase reporter, allowed simple identification of flowers with suppressed activity of the target genes. The applicability of VIGS was exemplified with genes encoding S-adenosyl-l-methionine:benzoic acid/salicylic acid carboxyl methyltransferase, phenylacetaldehyde synthase, and the myb transcription factor ODORANT1. Because this high-throughput reverse-genetics approach was applicable to both structural and regulatory genes responsible for volatile production, it is expected to be highly instrumental for large-scale scanning and functional characterization of novel scent genes.


Assuntos
Flores/metabolismo , Inativação Gênica , Engenharia Genética , Odorantes , Petunia/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Antocianinas/metabolismo , Petunia/metabolismo , Petunia/virologia , Vírus de Plantas
19.
Planta ; 226(6): 1491-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17636322

RESUMO

Previous studies have shown diurnal oscillation of scent emission in rose flowers with a peak during the day (Helsper in Planta 207:88-95, 1998; Picone in Planta 219:468-478, 2004). Here, we studied the regulation of scent production and emission in Rosa hybrida cv. Fragrant Cloud during the daily cycle and focused on two terpenoid compounds, germacrene D and geranyl acetate, whose biosynthetic genes have been characterized by us previously. The emission of geranyl acetate oscillated during the daily light/dark cycle with a peak early in the light period. A similar daily fluctuation was found in the endogenous level of this compound and in the expression of its biosynthetic gene, alcohol acetyl transferase (RhAAT). The rhythmic expression of RhAAT continued under conditions of constant light or darkness, indicating regulation by the endogenous circadian clock. However, the accumulation and emission of geranyl acetate ceased under continuous light. Our results suggest that geranyl acetate production is limited by the level of its substrate geraniol, which is suppressed under constant light conditions. The emission of germacrene D also oscillated during the daily cycle with a peak early in the light period. However, the endogenous level of this compound and the expression of its biosynthetic gene germacrene D synthase (RhGDS) were constant throughout the day. The diurnal oscillation of germacrene D emission ceased under continuous light, suggesting direct regulation by light. Our results demonstrate the complexity of the diurnal regulation of scent emission: although the daily emission of most scent compounds is synchronized, various independently evolved mechanisms control the production, accumulation and release of different volatiles.


Assuntos
Ritmo Circadiano/fisiologia , Flores/metabolismo , Odorantes , Rosa/metabolismo , Acetatos/metabolismo , Monoterpenos Acíclicos , Flores/genética , Flores/efeitos da radiação , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Rosa/genética , Rosa/efeitos da radiação , Sesquiterpenos de Germacrano/metabolismo , Terpenos/metabolismo
20.
Plant Mol Biol ; 60(4): 555-63, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16525891

RESUMO

Esters are important contributors to the aroma of numerous flowers and fruits. Acetate esters such as geranyl acetate, phenylethyl acetate and benzyl acetate are generated as a result of the action of alcohol acetyltransferases (AATs). Numerous homologous AATs from various plants have been characterized using in-vitro assays. To study the function of rose alcohol acetyltransferase (RhAAT) in planta, we generated transgenic petunia plants expressing the rose gene under the control of a CaMV-35S promoter. Although the preferred substrate of RhAAT in vitro is geraniol, in transgenic petunia flowers, it used phenylethyl alcohol and benzyl alcohol to produce the corresponding acetate esters, not generated by control flowers. The level of benzyl alcohol emitted by the flowers of different transgenic lines was ca. three times higher than that of phenylethyl alcohol, which corresponded to the ratio between the respective products, i.e. ca. three times more benzyl acetate than phenylethyl acetate. Feeding of transgenic petunia tissues with geraniol or octanol led to the production of their respective acetates, suggesting the dependence of volatile production on substrate availability.


Assuntos
Acetatos/metabolismo , Compostos de Benzil/metabolismo , Flores/metabolismo , Petunia/metabolismo , Álcool Feniletílico/análogos & derivados , Propanóis/metabolismo , Proteínas/metabolismo , Rosa/enzimologia , Acetatos/análise , Acetatos/química , Monoterpenos Acíclicos , Álcool Benzílico/análise , Álcool Benzílico/química , Cromatografia Gasosa , Flores/genética , Cinética , Espectrometria de Massas , Petunia/genética , Álcool Feniletílico/análise , Álcool Feniletílico/química , Álcool Feniletílico/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rosa/genética , Especificidade por Substrato , Terpenos/análise , Terpenos/química , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...