Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 111: 103397, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36585078

RESUMO

Some ant species live in hot and arid environments, such as deserts and savannas. Worker polymorphism-variation in worker size and/or morphology within colonies-is adaptive in such ecosystems because it enhances resistance to heat stress and increases the efficiency of resource exploitation. However, species with small, monomorphic workers are also frequently found in these environments. How species with distinct worker size and degrees of polymorphism deal with such stressful environments remains poorly studied. We investigated the behavioral, physiological, and molecular adaptations that may enhance heat and desiccation tolerance in two sympatric species of Cataglyphis desert ants that differ dramatically in worker size and polymorphism: C. viatica is polymorphic, while C. cubica is small and monomorphic. We found that worker size, water content, water loss, and protein regulation play a key role in thermal resistance. (i) Large C. viatica workers better tolerated heat and desiccation stress than did small C. viatica or C. cubica workers. The former had greater water content and lost proportionally less water to evaporation under thermal stress. (ii) Despite their similar size distribution, workers of C. cubica are more heat tolerant than small C. viatica. This higher degree of tolerance likely stemmed from C. cubica workers having greater relative water content. (iii) Under thermal stress, small C. viatica workers metabolized larger quantities of fat and differentially expressed proteins involved in cellular homeostasis. In contrast, C. cubica downregulated the expression of numerous proteins involved in mitochondrial respiration likely reducing ROS accumulation. (iv) Consistent with these results, large C. viatica workers remained active throughout the day; C. cubica workers displayed a bimodal activity pattern, and small C. viatica remained poorly active outside the nest. Our study shows that ecologically similar ant species with different degrees of worker size polymorphism evolved distinct strategies for coping with extreme heat conditions.


Assuntos
Formigas , Animais , Formigas/fisiologia , Ecossistema , Adaptação Fisiológica , Resposta ao Choque Térmico/fisiologia , Água/metabolismo
2.
Bioresour Technol ; 268: 237-246, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30081283

RESUMO

This study was conducted with the aim of embedding circular economies (waste recycling) with photosynthetic biorefineries, for production of commercially viable by-products. Since nitrogen source constitute the major input costs for commercial Arthrospira sp. production, the use of nitrogen rich wastewater for Arthrospira sp. cultivation could significantly reduce their production costs. This study evaluated the effects of high concentrations (8.5-120 mM) of alternative nitrogen sources (urea, ammonium and nitrite) on the biochemical, pigment and proteomic profile of Arthrospira sp., under batch and continuous conditions. Arthrospira sp. cells fed with urea were quantified with modified biochemical and proteomic profile compared to the nitrate fed cells. No inhibitory effect of urea was observed on the biomass even at 120 mM. Nitrite fed cells exhibited comparable biochemical and proteomic profiles as nitrate fed cells. These results clearly indicated at the possibility of using urea rich wastewater streams for profitable cultivation of Arthrospira sp.


Assuntos
Fotossíntese , Proteômica , Spirulina , Águas Residuárias , Biomassa , Nitrogênio , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA