Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38894045

RESUMO

The research presented here is an attempt to develop an innovative and environmentally friendly material based on bacterial nanocellulose (BNC), which will be able to replace both animal skins and synthetic polymer products. Bacterial nanocellulose becomes stiff and brittle when dried, so attempts have been made to plasticise this material so that BNC can be used in industry. The research presented here focuses on the ecological modification of bacterial nanocellulose with vegetable oils such as rapeseed oil, linseed oil, and grape seed oil. The effect of compatibilisers of a natural origin on the plasticisation process of BNC, such as chlorophyll, curcumin, and L-glutamine, was also evaluated. BNC samples were modified with rapeseed, linseed, and grapeseed oils, as well as mixtures of each of these oils with the previously mentioned additives. The modification was carried out by passing the oil, or oil mixture, through the BNC using vacuum filtration, where the BNC acted as a filter. The following tests were performed to determine the effect of the modification on the BNC: FTIR spectroscopic analysis, contact angle measurements, and static mechanical analysis. As a result of the modification, the BNC was plasticised. Rapeseed oil proved to be the best for this purpose, with the help of which a material with good strength and elasticity was obtained.

2.
Materials (Basel) ; 17(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673186

RESUMO

The subject of this research is the development of epoxy composites with a defined service life for the purpose of seat elements in rail vehicles, which will be more environmentally friendly. The produced materials based on epoxy resin filled with PLA or PLA and quercetin were subjected to solar aging tests for 800 h to investigate the impact of the additives used on the aging behavior of the epoxy matrix. Firstly, the TGA analysis showed that the use of the proposed additives allowed for the maintenance of the thermal stability of the epoxy resin. Moreover, based on an optical microscopy test, it was noticed that the introduction of PLA and PLA with quercetin did not contribute to an increase in matrix defects. The one-directional tensile tests carried out before and after solar aging showed that the presence of polylactide in epoxy composites causes a slight growth of the stiffness and strength. Based on contact angle and color change measurements, it was found that quercetin was oxidized, thus ensuring protection for the epoxy matrix. This phenomenon was confirmed by FTIR study, where the carbonyl index (CI) value for the R-PLA-Q composite was lower than for the reference sample. The obtained composite structures may be a good alternative to traditionally used systems as seat elements in rail vehicles, which are not only characterized by high aging resistance but are also more eco-friendly.

3.
Materials (Basel) ; 17(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612105

RESUMO

Epoxy resin compositions are used in modern railways, replacing other materials. However, epoxy composites in public transport are subject to many requirements, including that they should be flame retardant and resistant to weather conditions. The aim of the research was to analyse the resistance to solar ageing of epoxy resin composites containing flame retardants and the addition of the natural stabilising substance-quercetin. The homogeneity of the samples (optical microscopy and FTIR spectroscopy) and their thermal stability (TGA thermogravimetry) were analysed. The T5 temperature, which is the initial temperature of thermal decomposition of the samples, was 7 °C higher for the epoxy resin containing quercetin, so the material with polyphenol was characterised by better thermal resistance. Changes in material properties (hardness, surface energy, carbonyl index, colour) after 800 h solar ageing were investigated. The tensile tests on materials were executed for three different directions before and after ageing effect. The samples showed good resistance to degradation factors, i.e., they retained the functional properties (hardness and mechanical properties). However, analysis of carbonyl indices and surface energies showed that changes appeared in the composites after solar ageing, suggesting the beginning of material degradation. An approximately 3-fold increase in the polar component in epoxy resin compositions (from approximately 3 mN/m to approximately 11 mN/m) is associated with an increase in their hydrophilicity and the progress of ageing of the materials' surface. The obtained results are an introduction to further research on the long-term degradation processes of epoxy resins with plant stabilisers.

4.
Materials (Basel) ; 17(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473541

RESUMO

The aim of this work was to obtain epoxy-based composite structures with good mechanical performance, high aging resistance, and an improved degradability profile. For this purpose, powdered polylactide in the amount of 5, 10, 20, 30, and 40 phr was introduced into the epoxy resin, and the composites were fabricated by a simple method, which is similar to that used on an industrial scale in the fabrication of these products. The first analysis concerned the study of the effect of PLA addition to epoxy resin-based composites on their mechanical properties. One-directional tensile tests of samples were performed for three directions (0, 90, and 45 degrees referring to the plate edges). Another aspect of this research was the assessment of the resistance of these composites to long-term exposure to solar radiation and elevated temperature. Based on the obtained results, it was observed that the samples containing 20 or 40 phr of polylactide were characterized by the lowest resistance to the solar aging process. It was therefore concluded that the optimal amount of polylactide in the epoxy resin composite should not be greater than 10 phr to maintain its mechanical behavior and high aging resistance. In the available literature, there are many examples in which scientists have proposed the use of various biofillers (e.g., lignin, starch, rice husk, coconut shell powder) in epoxy composites; however, the impact of polylactide on the general characteristics of the epoxy resin has not been described so far. Therefore, this work perfectly fills the gaps in the literature and may contribute to a more widespread use of additives of natural origin, which may constitute an excellent alternative to commonly used non-renewable compounds.

5.
Molecules ; 29(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276590

RESUMO

This research concerns the modification of commercially available epoxy resin with flame retardants in order to obtain aging-resistant and antimicrobial polymeric materials with a plant stabilizer dedicated to use in rail transport. Polymer compositions based on epoxy resin, fiberglass fabric, and naringenin were prepared. Naringenin was added as a natural stabilizer at 2, 4, and 8 phr. The materials were subjected to solar aging lasting 800 h. The hardness of the samples, surface energy, and carbonyl indexes were determined, and the color change in the composition after aging was analyzed. In addition, microscopic observations, analyses of mechanical properties, and microbiological tests were performed. The hardness determination showed that the samples retained their functional properties after solar aging. The increase in the polar component of the surface energy of all materials indicated the beginning of the degradation process of the composites. The tensile one-directional tests were carried out for plane samples taken in three directions (0, 90, and 45 degrees referred to a plate edge) before and after the aging process. The addition of naringenin did not affect the functional and surface properties of the epoxy resin-based materials. Polyphenol stabilized polymer composites, as evidenced by the results of carbonyl indexes. Moreover, the obtained samples showed good antimicrobial properties for E. coli and C. albicans in the field of testing the viability of microbial cells in contact with the tested surfaces.


Assuntos
Anti-Infecciosos , Citrus , Flavanonas , Resinas Epóxi , Escherichia coli , Polímeros , Anti-Infecciosos/farmacologia
6.
Materials (Basel) ; 16(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005010

RESUMO

The presented study is focused on the modification of commercially available epoxy resin with flame retardants by means of using natural substances, including quercetin hydrate and potato starch. The main aim was to obtain environmentally friendly material dedicated to rail transport that is resistant to the aging process during exploitation but also more prone to biodegradation in environmental conditions after usage. Starch is a natural biopolymer that can be applied as a pro-ecological filler, which may contribute to degradation in environmental conditions, while quercetin hydrate is able to prevent a composite from premature degradation during exploitation. To determine the aging resistance of the prepared materials, the measurements of hardness, color, mechanical properties and surface free energy were performed before and after solar aging. To assess the mechanical properties of the composite material, one-directional tensile tests were performed for three directions (0, 90, 45 degrees referred to the plate edges). Moreover, the FT-IR spectra of pristine and aged materials were obtained to observe the changes in chemical structure. Furthermore, thermogravimetric analysis was conducted to achieve information about the impact of natural substances on the thermal resistance of the achieved composites.

7.
Front Chem ; 11: 1254941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744057

RESUMO

The precision of the four classical techniques (Karl-Fischer titration, (thermo)gravimetric method, Fourier-transform infrared (FT-IR) and near infrared (NIR) spectroscopies) commonly used in the analysis of cellulose moisture absorption/desorption has been deeply investigated regarding the reproducibility of these processes. Based on multiple repeated experiments, cellulose water content values obtained with Karl-Fischer titration and (thermo)gravimetric method were plotted as a function of time. Then, the cautious peak-by-peak analysis of the absorbance and wavenumber shifts visible in IR spectra has been carried out. The collected data was described using boxplots that provided valuable information on the experimental points spread. It has been successfully proven that gravimetric methods allow for precise drawing of moisture absorption and desorption curves, while Karl-Fischer titration, ATR FT-IR and NIR techniques provide the possibility of the moisture absorption/desorption processes description by linear mathematical models (R2 >90%). Therefore, this study provides a systematic comparison between various analytical methods.

8.
Int J Biol Macromol ; 235: 123876, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36870630

RESUMO

In this publication, the functional TiO2-lignin hybrid materials were designed and characterized. Based on elemental analysis and Fourier transform infrared spectroscopy, the efficiency of the mechanical method used to obtain systems was confirmed. Hybrid materials were also characterized by good electrokinetic stability, in particular in the inert and alkaline environments. The addition of TiO2 improves thermal stability in the entire analyzed range of temperatures. Similarly, as the content of inorganic component increases, the homogeneity of the system and the occurrence of smaller nanometric particles increase. In addition, a novel synthesis method of cross-linked polymer composites based on a commercial epoxy resin and an amine cross-linker was described as a part of the article, where additionally newly designed hybrids were also used. Subsequently, the obtained composites were subjected to simulated tests of accelerated UV-aging, and then their properties were studied, including changes in wettability (using water, ethylene glycol, and diiodomethane as measurement liquids) and surface free energy by the Owens-Wendt-Eabel-Kealble method. Changes in the chemical structure of the composites were monitored by FTIR spectroscopy due to aging. Microscopic studies of surfaces were also carried out as well as measurements in the field of changes in color parameters in the CIE-Lab system.


Assuntos
Resinas Epóxi , Lignina , Lignina/química , Resinas Epóxi/química , Titânio , Temperatura
9.
Sci Rep ; 12(1): 19739, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396855

RESUMO

The aim of this research was to evaluate the applicability of the attenuated total reflectance Fourier-transform infrared (ATR FT-IR) spectroscopy in the quantitative analysis of the moisture content in cellulose (from 0.5 to 11.0 wt.%). Innovatively, this work describes the variations in both absorbance and wavenumber of 16 absorption bands plotted as a function of cellulose water amount measured with Karl-Fischer titration. Different regression models were investigated (simple linear, semilogarithmic, power) and the adjusted coefficient of determination (R2) was given for each calculation. While model exhibited R2 > 90%, the standard error of calibration (SEC) was presented and an external validation has been performed. Regarding the absorbance-water content relationship, data recorded for sixteen peaks was successfully fitted with linear functions exhibiting R2 > 90%. The highest value of R2 = 98.7% and standard error of prediction SEP = 0.3wt.% have been assigned to the maximum from 3339 to 3327 cm-1 (-OH), proving ATR FT-IR usefulness in quantitative analysis.


Assuntos
Celulose , Água , Água/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Modelos Teóricos , Calibragem
10.
Molecules ; 27(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431977

RESUMO

This research aimed to show the possible impact of natural antioxidants on epoxidized natural rubber (ENR) and poly(lactic acid) (PLA) green composites. Thus, the ENR/PLA blends were prepared with the addition of three selected phytochemicals (catechin hydrate, eugenol and flavone). Obtained materials were submitted for solar aging. The analysis of the samples' features revealed that catechin hydrate is a natural substance that may delay the degradation of ENR/PLA blends under the abovementioned conditions. The blend loaded with catechin hydrate presented stable color parameters (dE < 3 a.u.), the highest aging coefficient (K = 0.38 a.u.) and the lowest carbonyl index based on FT-IR data (CI = 1.56) from among all specimens. What is more, this specimen prolonged the oxidation induction time in comparison with the reference samples. Gathered data prove the efficiency of catechin hydrate as an anti-aging additive. Additionally, it was found that a specimen loaded with flavone changed its color parameters significantly after solar aging (dE = 14.83 a.u.) so that it would be used as an aging indicator. Eventually, presented eco-friendly ENR-based compositions may be applied in polymer technology where materials presenting specific properties are desirable.


Assuntos
Catequina , Flavonas , Borracha/química , Catequina/química , Compostos de Epóxi/química , Espectroscopia de Infravermelho com Transformada de Fourier , Poliésteres
11.
Front Bioeng Biotechnol ; 10: 912052, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061440

RESUMO

Among the many possible types of polymer composite materials, the most important are nanocomposites and biocomposites, which have received tremendous attention in recent years due to their unique properties. The fundamental benefits of using biocomposites as alternative materials to "petroleum-based" products are certainly shaping current development trends and setting directions for future research and applications of polymer composites. A dynamic growth of the production and sale of biocomposites is observed in the global market, which results not only from the growing interest and demand for this type of materials, but also due to the fact that for the developed and modified, thus improved materials, the area of their application is constantly expanding. Already today, polymer composites with plant raw materials are used in various sectors of the economy. In particular, this concerns the automotive and construction industries, as well as widely understood packaging. Bacterial cellulose, for example, also known as bionanocellulose, as a natural polymer with specific and unique properties, has been used extensively,primarily in numerous medical applications. Intensive research is also being carried out into composites with natural fibres composed mainly of organic compounds such as cellulose, hemicellulose and lignin. However, three aspects seem to be associated with the popularisation of biopolymers: performance, processing and cost. This article provides a brief overview of the topic under discussion. What can be the technological limitations considering the methods of obtaining polymer composites with the use of plant filler and the influence on their properties? What properties of cellulose constitute an important issue from the point of view of its applicability in polymers, in the context of compatibility with the polymer matrix and processability? What can be the ways of changing these properties through modifications, which may be crucial from the point of view of the development directions of biopolymers and bioplastics, whose further new applications will be related, among others, to the enhancement of properties? There still seems to be considerable potential to improve the cellulose material composites being produced, as well as to improve the efficiency of their manufacturing. Nevertheless, the material still needs to be well optimized before it can replace conventional materials at the industrial level in the near future. Typically, various studies discuss their comparison in terms of production, properties and highly demanding applications of plant or bacterial nanocellulose. Usually, aspects of each are described separately in the literature. In the present review, several important data are gathered in one place, providing a basis for comparing the types of cellulose described. On the one hand, this comparison aims to demonstrate the advantage of bacterial cellulose over plant cellulose, due to environmental protection and its unique properties. On the other hand, it aims to prepare a more comprehensive point of view that can objectively help in deciding which cellulosic raw material may be more suitable for a particular purpose, bacterial cellulose or plant cellulose.

12.
Molecules ; 27(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744827

RESUMO

Naringenin is one of the flavonoids originating from citrus fruit. This polyphenol is mainly found in grapefruit, orange and lemon. The antioxidant and antimicrobial properties of flavonoids depend on their structure, including the polymeric form. The aim of this research was to achieve enzymatic polymerization of naringenin and to study the properties of poly(naringenin). The polymerization was performed by methods using two different enzymes, i.e., laccase and horseradish peroxidase (HRP). According to the literature data, naringenin had not been polymerized previously using the enzymatic polymerization method. Therefore, obtaining polymeric naringenin by reaction with enzymes is a scientific novelty. The research methodology included analysis of the structure of poly(naringenin) by NMR, GPC, FTIR and UV-Vis and its morphology by SEM, as well as analysis of its properties, i.e., thermal stability (DSC and TGA), antioxidant activity (ABTS, DPPH, FRAP and CUPRAC) and antimicrobial properties. Naringenin oligomers were obtained as a result of polymerization with two types of enzymes. The polymeric forms of naringenin were more resistant to thermo-oxidation; the final oxidation temperature To of naringenin catalyzed by laccase (poly(naringenin)-laccase) was 28.2 °C higher, and poly(naringenin)-HRP 23.6 °C higher than that of the basic flavonoid. Additionally, due to the higher molar mass and associated increase in OH groups in the structure, naringenin catalyzed by laccase (poly(naringenin)-laccase) showed better activity for scavenging ABTS+• radicals than naringenin catalyzed by HRP (poly(naringenin)-HRP) and naringenin. In addition, poly(naringenin)-laccase at a concentration of 5 mg/mL exhibited better microbial activity against E. coli than monomeric naringenin.


Assuntos
Citrus , Lacase , Antioxidantes/farmacologia , Citrus/metabolismo , Escherichia coli/metabolismo , Flavonoides/química , Peroxidase do Rábano Silvestre/metabolismo , Lacase/metabolismo , Oxirredução , Polímeros
13.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628197

RESUMO

Due to the growing demand for sustainable hygiene products (that will exhibit biodegradability and compostability properties), the challenge of developing a superabsorbent polymer that absorbs significant amounts of liquid has been raised so that it can be used in the hygiene sector in the future. The work covers the study of the swelling and dehydration kinetics of hydrogels formed by grafting polymerization of carboxymethyl starch (CMS) and chitosan (Ch). Vanillin (Van) was used as the crosslinking agent. The swelling and dehydration kinetics of the polymers were measured in various solutes including deionized water buffers with pH from 1 to 12 and in aqueous solutions of sodium chloride at 298 and 311 K. The surface morphology and texture properties of the analyzed hydrogels were observed by scanning electron microscopy (SEM). The influence of this structure on swelling and dehydration is discussed. Fourier transform infrared (FTIR) analyses confirmed the interaction between the carboxymethyl starch carbonyl groups and the chitosan amino groups in the resulting hydrogels. Additionally, spectroscopic analyses confirmed the formation of acetal crosslink bridges including vanillin molecules. The chemical dynamics studies revealed that new hydrogel dehydration kinetics strongly depend on the vanillin content. The main significance of the study concerns the positive results of the survey for the new superabsorbent polymer material, coupling high fluid absorbance with biodegradability. The studies on biodegradability indicated that resulting materials show good environmental degradability characteristics and can be considered true biodegradable superabsorbent polymers.


Assuntos
Quitosana , Benzaldeídos , Quitosana/química , Desidratação , Humanos , Hidrogéis/química , Polímeros/química , Amido/análogos & derivados , Água/química
14.
Materials (Basel) ; 15(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35591590

RESUMO

The presented research concerns the mechanochemical modification of a snap-cure type of epoxy resin, A.S. SET 1010, with the addition of different amounts of cellulose (0, 2, 5, 10, 15 and 20 per 100 resin), for a novel, controlled-degradation material with possible application in the production of passenger seats in rail transport. Composite samples were prepared on a hydraulic press in ac-cordance with the resin manufacturer's recommendations, in the form of tiles with dimensions of 80 × 80 × 1 mm. The prepared samples were subjected to thermo-oxidative aging and weathering for a period of 336 h. Changes in the color and surface defects in the investigated composites were evaluated using UV-Vis spectrophotometry (Cie-Lab). The degree of degradation by changes in the chemical structure of the samples was analyzed using FTIR/ATR spectroscopy. Differential scan-ning calorimetry (DSC) and thermogravimetric analysis (TGA) tests were performed, and the sur-face energy of the samples was determined by measuring the contact angle of droplets. Tests were performed to determine changes in cellulose-filled epoxy resin composites after thermo-oxidative aging and weathering. It was found out that the addition of cellulose did not inflict sufficient changes to the properties within tested parameters. In the tested case, cellulose acted as a natural active biofiller. Our research is in line with the widespread pursuit of pro-ecological solutions in industry and the creation of materials with a positive impact on the natural environment.

15.
Carbohydr Polym ; 289: 119459, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483861

RESUMO

The aim of this research was to investigate for the first time the possible application range of sustainable cellulose-filled polymer-based materials dedicated for common use in healthcare sector. These products are exposed to contact with solutions of different acidity, microorganisms and are being constantly UV sterilized. Therefore, the impact of plant filler on the microbial growth, UV-aging and pH-resistance of cellulose-filled ethylene-norbornene copolymer (EN) was investigated, as the polymer matrix employed is widely used in healthcare applications. Moreover, two different coupling agents, vinyltrimethoxysilane (VTMS) and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPTMS), were used to promote the adhesion between the polymer matrix and cellulose (hydrophobization of fibres evidenced with increased water contact angle from 15 to 130°). Additionally, UV-aging revealed that the silane-originated functional groups might have possibly acted as free radical scavengers, hence, prolonging composites' shelf-life. Furthermore, incorporation of investigated amount of cellulose did not result in the decreased pH-resistance or improved growth of Escherichia coli.


Assuntos
Antibacterianos , Celulose , Farmacorresistência Bacteriana , Etilenos , Norbornanos , Polímeros
16.
Materials (Basel) ; 15(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35407897

RESUMO

This review article provides basic information about cannabis, its structure, and its impact on human development at the turn of the century. It also contains a brief description of the cultivation and application of these plants in the basic branches of the economy. This overview is also a comprehensive collection of information on the chemical composition of individual cannabis derivatives. It contains the characteristics of the chemical composition as well as the physicochemical and mechanical properties of hemp fibers, oil, extracts and wax, which is unique compared to other review articles. As one of the few articles, it approaches the topic in a holistic and evolutionary way, moving through the plant's life cycle. Its important element is examples of the use of hemp derivatives in polymer composites based on thermoplastics, elastomers and duroplasts and the influence of these additives on their properties, which cannot be found in other review articles on this subject. It indicates possible directions for further technological development, with particular emphasis on the pro-ecological aspects of these plants. It indicates the gaps and possible research directions in basic knowledge on the use of hemp in elastomers.

17.
Molecules ; 27(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35408613

RESUMO

Silica is a popular filler, but in epoxidized natural rubber, can act as a cross-linking agent. Unfortunately, a high amount of silica is necessary to obtain satisfactory tensile strength. Moreover, a high amount of silica in ENR/silica hybrids is associated with low elongation at break. In our paper, we propose natural phenolic compounds, including quercetin, tannic acid, and gallic acid as natural and safe additional crosslinkers dedicated to ENR/silica hybrids to obtain bio-elastomers with improved mechanical properties. Therefore, toxic crosslinkers, such as peroxides or harmful accelerators can be eliminated. The impact of selected natural phenolic compounds on crosslinking effect, mechanical properties, color, and chemical structure of ENR/silica composite have been analyzed. The obtained results indicated that only 3 phr of selected natural phenolic compounds is able to improve crosslinking effect as well as mechanical properties of ENR/silica hybrids. Moreover, some of the prepared materials tend to regain mechanical properties after reprocessing. Such materials containing only natural and safe ingredients have a chance of becoming novel elastomeric biomaterials dedicated to biomedical applications.


Assuntos
Borracha , Dióxido de Silício , Elastômeros/química , Compostos de Epóxi/química , Borracha/química , Dióxido de Silício/química , Temperatura
18.
Constr Build Mater ; 324: 126712, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35132297

RESUMO

After the coronavirus outbreak, a tremendous amount of personal protective equipment has been produced and used by the health service and every human. Proper medical waste management becomes an important problem, which must be solved with a minimal environmental impact. The presented manuscript introduces the recycling process, during which personal protection masks are transformed into polypropylene fibers being an addition to a concrete mixture. The designed recycling procedure provides the entire disinfection of probably contaminated medical wastes, is straightforward, and potentially enables one to modify the properties of the final product. The applied dosage referred to 1 mask per 1 L of concrete. The final product of face masks processing was studied using Fourier-transform infrared spectroscopy, thermogravimetric analysis, surface free energy, contact angle measurements, and melt flow index. The analysis indicated that polypropylene is its main component. Two concrete mixtures were composed, i.e., with the addition of processed masks and the reference one. The following properties were determined to compare the modified concrete with the reference one: compressive and tensile strength, frost resistance, water transport properties, resistance to high temperature. The obtained results indicated that the addition of processed masks slightly increased the compressive strength (by about 5%) and decreased the tensile strength (by about 3%). Simultaneously, it was reported that the addition did not affect material properties related to concrete durability as frost resistance, water permeability, and fire performance. The results evinced, that the addition of processed facemasks into concrete did not deteriorate its properties. Therefore, it is a possible way of the protective masks processing and reusing with the high recycling capacity. Further study should be conducted to optimize the dosing and to modify the properties of PP strings to improve hardened concrete properties.

19.
Int J Mol Sci ; 22(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34884831

RESUMO

The effects of plant-based extracts on the solar aging and antimicrobial properties of impregnated ethylene-norbornene (EN) copolymer and poly(lactic acid) (PLA) were investigated. In this study, the impregnation yield of polyolefin, lacking in active centers capable of phytochemical bonding, and polyester, abundant in active sides, was measured. Moreover, two different extracts plentiful in phytochemicals-thyme (TE) and clove (CE)-were employed in the solvent-based impregnation process. The effect of thymol and eugenol, the two main compounds embodied in the extracts, was studied as well. Interestingly, oxidation induction times (OIT) for the impregnation of EN with thyme and clove extracts were established to be, respectively, 27.7 and 39.02 min, which are higher than for thymol (18.4 min) and eugenol (21.1 min). Therefore, an aging experiment, mimicking the full spectrum of sunlight, was carried out to investigate the resistance to common radiation of materials impregnated with antioxidative substances. As expected, the experiment revealed that the natural extracts increased the shelf-life of the polymer matrix by inhibiting the degradation processes. The aging resistance was assessed based on detected changes in the materials' behavior and structure that were examined with Fourier-transform infrared spectroscopy, contact angle measurements, color quantification, tensile tests, and hardness investigation. Such broad results of solar aging regarding materials impregnated with thyme and clove extracts have not been reported to date. Moreover, CE was found to be the most effective modifying agent for enabling material with antimicrobial activity against Escherichia coli to be obtained.


Assuntos
Anti-Infecciosos/química , Compostos Fitoquímicos/química , Poliésteres/química , Polímeros/química , Syzygium/química , Thymus (Planta)/química , Anti-Infecciosos/farmacologia , Escherichia coli/efeitos dos fármacos , Etilenos/química , Eugenol/química , Norbornanos/química , Oxirredução , Extratos Vegetais/química , Poliésteres/farmacologia , Polímeros/farmacologia , Luz Solar , Syzygium/metabolismo , Resistência à Tração , Timol/química , Thymus (Planta)/metabolismo , Fatores de Tempo
20.
Antioxidants (Basel) ; 10(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34829594

RESUMO

The aim of the study was to analyze the polyphenolic profile of cone extracts of Douglas fir, Scots pine and Korean fir, and to study their antioxidant activity. The mechanism of electro-oxidation of polyphenols (such as procyanidins and catechins) from cone extracts was investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), as well as spectrophotometric methods-ABTS (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate)), DPPH (2,2-diphenyl-1-picrylhydrazyl), FRAP (Ferric Reducing Antioxidant Power ) and CUPRAC (CUPric Reducing Antioxidant Capacity). The scientific novelty of the research is the comprehensive analysis of cone extracts in terms of antioxidant properties. Due to the high polyphenol content, the extracts showed significant ability to reduce oxidative reactions, as well as the ability to scavenge free radicals and transition metal ions. Douglas fir, Scots pine and Korean fir cone extracts can potentially be used as natural stabilizers, preservatives and antimicrobial substances in the food industry and in medications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA