Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(2-3): 735-747, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36607403

RESUMO

Cytochrome P450 monooxygenases (CYP450s) are abundant in eukaryotes, specifically in plants and fungi where they play important roles in the synthesis and degradation of secondary metabolites. In eukaryotes, the best studied "self-sufficient" CYP450s, with a fused redox partner, belong to the CYP505 family. Members of the CYP505 family are generally considered sub-terminal fatty acid hydroxylases. CYP505E3 from Aspergillus terreus, however, gives remarkable in-chain hydroxylation at the ω-7 position of C10 to C16 alkanes and C12 and C14 fatty alcohols. Because CYP505E3 is a promising catalyst for the synthesis of δ-dodecalactone, we set out to delineate the unique ω-7 hydroxylase activity of CYP505E3. CYP505E3 and six additional CYP505Es as well as four closely related CYP505s from four different subfamilies were expressed in Pichia pastoris. Only the CYP505Es, sharing more than 70% amino acid identity, displayed significant ω-7 hydroxylase activity toward 1-dodecanol, dodecanoic acid, and tetradecanoic acid giving products that can readily be converted to δ-dodecalactone. Concentrations of δ-dodecalactone, directly extracted from dodecanoic acid biotransformations, were higher than previously obtained with E. coli. Searches of the UniProt and NCBI databases yielded a total of only 23 unique CYP505Es, all from the Aspergillaceae. Given that CYP505Es with this remarkable activity occur in only a few Aspergillus and Penicillium spp., we further explored the genetic environments in which they occur. These were found to be very distinct environments which include a specific ABC transporter but could not be linked to apparent secondary metabolite gene clusters. KEY POINTS: • Identified CYP505Es share > 70% amino acid identity. • CYP505Es hydroxylate 1-dodecanol, dodecanoic, and tetradecanoic acid at ω-7 position. • CYP505E genes occur in Aspergillus and Penicillium spp. near an ABC transporter.


Assuntos
Aspergillus , Sistema Enzimático do Citocromo P-450 , Aminoácidos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dodecanol/metabolismo , Hidroxilação , Ácido Mirístico , Aspergillus/enzimologia , Aspergillus/genética
2.
Angew Chem Int Ed Engl ; 59(26): 10359-10362, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32147902

RESUMO

The self-sufficient cytochrome P450 monooxygenase CYP505E3 from Aspergillus terreus catalyzes the regioselective in-chain hydroxylation of alkanes, fatty alcohols, and fatty acids at the ω-7 position. It is the first reported P450 to give regioselective in-chain ω-7 hydroxylation of C10-C16 n-alkanes, thereby enabling the one step biocatalytic synthesis of rare alcohols such as 5-dodecanol and 7-tetradecanol. It shows more than 70 % regioselectivity for the eighth carbon from one methyl terminus, and displays remarkably high activity towards decane (TTN≈8000) and dodecane (TTN≈2000). CYP505E3 can be used to synthesize the high-value flavour compound δ-dodecalactone via two routes: 1) conversion of dodecanoic acid into 5-hydroxydodecanoic acid (24 % regioselectivity), which at low pH lactonises to δ-dodecalactone, and 2) conversion of 1-dodecanol into 1,5-dodecanediol (55 % regioselectivity), which can be converted into δ-dodecalactone by horse liver alcohol dehydrogenase.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Alcanos/química , Aspergillus/enzimologia , Biocatálise , Ácidos Graxos/química , Álcoois Graxos/química , Hidroxilação , Lactonas/síntese química , Estrutura Molecular , Pironas/síntese química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA