Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 112: 104073, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32905918

RESUMO

Our sense of fine touch deteriorates as we age, a phenomenon typically associated with neurological changes to the skin. However, geometric and material changes to the skin may also play an important role on tactile perception and have not been studied in detail. Here, a finite element model is utilised to assess the extent to which age-related structural changes to the skin influence the tactile stimuli experienced by the mechanoreceptors. A numerical, hyperelastic, four-layered skin model was developed to simulate sliding of the finger against a rigid surface. The strain, deviatoric stress and strain energy density were recorded at the sites of the Merkel and Meissner receptors, whilst parameters of the model were systematically varied to simulate age-related geometric and material skin changes. The simulations comprise changes in skin layer stiffness, flattening of the dermal-epidermal junction and thinning of the dermis. It was found that the stiffness of the skin layers has a substantial effect on the stimulus magnitudes recorded at mechanoreceptors. Additionally, reducing the thickness of the dermis has a substantial effect on the Merkel disc whilst the Meissner corpuscle is particularly affected by flattening of the dermal epidermal junction. In order to represent aged skin, a model comprising a combination of ageing manifestations revealed a decrease in stimulus magnitudes at both mechanoreceptor sites. The result from the combined model differed from the sum of effects of the individually tested ageing manifestations, indicating that the individual effects of ageing cannot be linearly superimposed. Each manifestation of ageing results in a decreased stimulation intensity at the Meissner Corpuscle site, suggesting that ageing reduces the proportion of stimuli meeting the receptor amplitude detection threshold. This model therefore offers an additional biomechanical explanation for tactile perceptive degradation amongst the elderly. Applications of the developed model are in the evaluation of cosmetics products aimed at mitigating the effects of ageing, e.g. through skin hydration and administration of antioxidants, as well as in the design of products with improved tactile sensation, e.g. through the optimisation of materials and surface textures.


Assuntos
Mecanorreceptores , Tato , Idoso , Envelhecimento , Dedos , Humanos , Pele
2.
Colloids Surf B Biointerfaces ; 189: 110883, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32105961

RESUMO

Understanding the mechanical response of skin to contact is of importance when developing products that interact with the skin. The shear forces that arise due to friction in the interface are a key aspect of skin interactions, because shear is known to contribute to discomfort and tissue injury. However, the frictional response of skin shows large variations between people. It has been hypothesised that these variations relate to differences between people in the physiological properties of their skin, but the underlying mechanisms are not well understood. In order to gain new insights into these interpersonal differences in friction behaviour, in vivo FTIR measurements and in vivo friction measurements were performed on the same patch of skin. Quantitative analysis of the various peaks in the FTIR spectra provided information on the moisture content of the stratum corneum and the amount and mechanical properties of the lipids on the skin. The lipid viscosity, as characterised by the width of the 2920 cm-1 peak, correlates with the friction, whilst, interestingly, no relationship was found between the quantity of lipids on the skin surface and the coefficient of friction. Additionally, and as expected, a fairly strong correlation was obtained between the moisture content, as characterised by the height of the Amide I peak and the coefficient of friction. The presented results show that spectroscopy techniques can be used in as a non-invasive method to identify people who may show elevated levels of friction and thus are at increased risk of developing shear induced tissue injury.


Assuntos
Lipídeos/química , Pele/química , Adulto , Voluntários Saudáveis , Humanos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Água/química , Adulto Jovem
3.
Tribol Lett ; 67(1): 27, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30872906

RESUMO

Surface modification of an elastomer may be formed during sliding contact with a rigid counter surface. This alteration leads to a change of mechanical properties at the surface and as a result a change in frictional behavior. Therefore, investigations related to the formation of a modified surface layer on elastomers and its effect on friction are of importance. In the present study, the formation of a modified surface layer on elastomer reinforced by silica is studied. Sliding friction is performed using a pin-on-disc tribometer. Several parameters are varied, namely contact pressure, velocity, and roughness of the counter surface. The existence of a modified surface layer is investigated by using a scanning electron microscope. The results show that the existence of a modified surface layer depends on the competition between the formation rate of the layer and the wear rate. The formation of the layer depends on the contact pressure, velocity, and sliding distance. A general formulation to calculate the volume of formation is proposed. Furthermore, a map of the formation of a modified surface layer is developed.

4.
J Mech Behav Biomed Mater ; 92: 137-143, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30685727

RESUMO

The interaction behaviour of skin with a counter surface depends strongly on the surface roughness of the counter surface. For relatively hard surfaces this effect is described in various literature, but for soft, or compliant, materials this is much less studied. Inside the contact, the protuberances on the surface will deform substantially. In order to gain insights into the effect of surface roughness and hardness on the frictional behaviour between skin and a soft counter surface a range of experiments were performed using artificial skin and various silicone compounds which are commonly used in medical devices that interact with the human skin. Using these results, a 'friction map' was created that shows the friction behaviour as a function of the elastic modulus and the surface roughness. When the surface roughness is increased the friction coefficient decreases due to the reduction in the real area of contact, which weakens the adhesion between the two surfaces. A minimum coefficient of friction was observed at a surface roughness of approximately 4 µm. For the softest compounds tested there was minimal effect of surface roughness on friction because the roughness protuberances inside the contact will be flattened. Silicone compounds with increased hardness showed a larger sensitivity of the friction to the surface roughness, because these harder surface roughness protuberances are more resistant against deformation. The friction map provides a tool when designing products that require certain frictional properties: for products that are required to adhere to skin a smooth and soft material is recommended, whereas for products that require a low coefficient of friction a harder compound with a surface roughness of approximately 4 µm is recommended.


Assuntos
Fricção , Pele , Dureza , Silicones , Propriedades de Superfície
5.
J Mech Behav Biomed Mater ; 28: 448-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23796756

RESUMO

In the past decades, skin friction research has focused on determining which variables are important to affect the frictional behaviour of in vivo human skin. Until now, there is still limited knowledge on these variables. This study has used a large dataset to identify the effect of variables on the human skin, subject characteristics and environmental conditions on skin friction. The data are obtained on 50 subjects (34 males and 16 females). Friction measurements represent the friction between in vivo human skin and an aluminium sample, assessed on three anatomical locations. The coefficient of friction increased significantly (p<0.05) with increasing age, increasing ambient temperature and increasing relative air humidity. A significant inversely proportional relationship was found between friction and both the amount of hair present on the skin and the height of the subject. Other outcome variables in this study were the hydration of the skin and the skin temperature.


Assuntos
Fricção , Pele , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Alumínio , Fenômenos Biomecânicos , Composição Corporal , Criança , Pré-Escolar , Feminino , Antebraço/anatomia & histologia , Cabelo , Humanos , Umidade , Lactente , Masculino , Pessoa de Meia-Idade , Aptidão Física , Fatores Sexuais , Pele/anatomia & histologia , Temperatura Cutânea , Fatores de Tempo , Adulto Jovem
6.
Skin Res Technol ; 19(3): 330-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23441726

RESUMO

BACKGROUND: The frictional characteristics of skin-object interactions are important when handling objects, in the assessment of perception and comfort of products and materials and in the origins and prevention of skin injuries. In this study, based on statistical methods, a quantitative model is developed that describes the friction behaviour of human skin as a function of the subject characteristics, contact conditions, the properties of the counter material as well as environmental conditions. AIMS: Although the frictional behaviour of human skin is a multivariable problem, in literature the variables that are associated with skin friction have been studied using univariable methods. In this work, multivariable models for the static and dynamic coefficients of friction as well as for the hydration of the skin are presented. MATERIALS & METHODS: A total of 634 skin-friction measurements were performed using a recently developed tribometer. Using a statistical analysis, previously defined potential influential variables were linked to the static and dynamic coefficient of friction and to the hydration of the skin, resulting in three predictive quantitative models that descibe the friction behaviour and the hydration of human skin respectively. RESULTS AND DISCUSSION: Increased dynamic coefficients of friction were obtained from older subjects, on the index finger, with materials with a higher surface energy at higher room temperatures, whereas lower dynamic coefficients of friction were obtained at lower skin temperatures, on the temple with rougher contact materials. The static coefficient of friction increased with higher skin hydration, increasing age, on the index finger, with materials with a higher surface energy and at higher ambient temperatures. The hydration of the skin was associated with the skin temperature, anatomical location, presence of hair on the skin and the relative air humidity. CONCLUSION: Predictive models have been derived for the static and dynamic coefficient of friction using a multivariable approach. These two coefficients of friction show a strong correlation. Consequently the two multivariable models resemble, with the static coefficient of friction being on average 18% lower than the dynamic coefficient of friction. The multivariable models in this study can be used to describe the data set that was the basis for this study. Care should be taken when generalising these results.


Assuntos
Água Corporal/metabolismo , Fricção , Modelos Biológicos , Modelos Estatísticos , Fenômenos Fisiológicos da Pele , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Análise Multivariada , Propriedades de Superfície
7.
J Mech Behav Biomed Mater ; 4(8): 1620-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22098864

RESUMO

This work focuses on the friction in contacts where the human finger pad is one of the interacting surfaces. This 'tactile friction' requires a full understanding of the contact mechanics and the behaviour of human skin. The coefficient of friction cannot be considered as a property of the skin alone, but depends on the entire tribo-system. In this work, frictional forces were measured using a commercially available load cell. Parameters such as the hydration of the skin, the normal load on the contact and the roughness of the contacting surfaces were varied, whilst keeping the other parameters constant. The tests were performed under controlled environmental conditions. The total friction force is a combination of forces related to adhesion and to deformation. A commonly made assumption is that, to describe the friction of human skin, the deformation component can be ignored and only the adhesive behaviour has to be taken into account. However, in this study it was found that the forces related to the (micro-scale) deformation of skin can have a significant contribution to the total friction force; this is valid both for dry conditions and in the presence of water, when hydration of the skin causes softening.


Assuntos
Fricção/fisiologia , Tato/fisiologia , Módulo de Elasticidade , Dedos/fisiologia , Humanos , Movimento , Fenômenos Fisiológicos da Pele , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA