Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400402, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739104

RESUMO

Organic electrosynthesis is an emerging field that provides original selectivity while adding features of atom economy, sustainability, and selectivity. Electrosynthesis is often enhanced by redox mediators or electroauxiliaries. The mechanistic understanding of organic electrosynthesis is however often limited by the low lifetime of intermediates and its difficult detection. In this work, we report a computational analysis of the mechanism of an appealing reaction previously reported by Mei and co-workers which is catalyzed by copper and employs iodide as redox mediator. Our scheme combines DFT calculations with microkinetic modeling and covers both the reaction in solution and the electrodic steps. A detailed mechanistic scheme is obtained which reproduces well experimental data and opens perspectives for the general treatment of these processes.

2.
Dalton Trans ; 53(2): 656-665, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38073605

RESUMO

Carboxylate-assisted Pd-catalyzed C-H bond activation constitutes a mild and versatile synthetic tool to efficiently and selectively cleave inert C-H bonds. Herein, we demonstrate a simple method to experimentally evaluate both reactivity and selectivity in such systems using mass spectrometry (MS) methods. The N-heterocyclic carbene (NHC) cations [(NHC)PdX]+, bearing as X- ligand bases commonly used to promote the C-H activation (carboxylates and bicarbonate), are generated in the gas-phase by ESI-MS. Their C-H bond activation at the N-bound groups of the NHC is then studied using Collision Induced Dissociation (CID) experiments. Ion Mobility Spectrometry (IM)-MS is exploited to identify a number of regioisomers associated with the distinctive site selective C-H activations. It is demonstrated that such C-H activation concomitant with acetic acid release occurs from a mixture of activated [(NHC-H)Pd(CH3CO2H)]+ and non-activated [(NHC)Pd(CH3CO2)]+ complexes. The identity of the X-type ligands (X = Cl-, carboxylates and bicarbonate) has a significant impact on the regioisomer branching ratio upon CID conditions. IM-MS in conjunction with a DFT mechanistic study is presented for the acetate-assisted C-H activation of the [(NHC)Pd(CH3CO2)]+ cation featuring butyl and aryl as N-donor groups.

3.
Chempluschem ; 89(4): e202300502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37987142

RESUMO

We identify the dominant structures of the intermediates of gold(I)-catalyzed cyclizations of 1,5-enynes and 1,5-allenenes through computational analysis as gold(I) cyclopropylcarbenes, endocyclic vinylgold complexes and previously unreported non-classical carbocationic minima. In contrast to 1,6-enynes, the exocyclic carbocations are found to be less stable. Cyclopropylcarbene structures are consistently favoured as the most stable intermediates for all studied substitution patterns. We validate the computational methods used by using DLPNO-CCSD(T) energies as a benchmark, indicating that the B3LYP-D3 and M06-D3 functionals are most accurate for energy determination, while NPA charges are mostly insensitive to functional. The evolution of a 1,6-enyne in a single-cleavage or double-cleavage rearrangement is attributed to the barrierless evolution of a common cyclopropyl-gold(I) carbocation non-stationary geometry. Our findings provide insights into reaction pathways and substrate dependence of the cycloisomerization processes.

4.
ACS Catal ; 13(1): 706-713, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-37808365

RESUMO

In the context of copper-catalyzed nitrene transfer to olefins, many systems operate upon mixing a CuX salt (X = halide, OTf) and a polydentate N-based ligand, assuming that the X ligand is displaced from the coordination sphere toward a counterion position. Herein, we demonstrated that such general assumption should be in doubt since studies carried out with the well-defined copper(I) complexes (TTM)CuCl and [(TTM)Cu(NCMe)]PF6 (TTM = tris(triazolyl)methane ligand) demonstrate a dual behavior from a catalytic and mechanistic point of view that exclusively depends on the presence or absence of the chloride ligand bonded to the metal center. When coordinated, the turnover-limiting step corresponds to the formation of the carbon-nitrene bond, whereas in its absence, the highest barrier corresponds to the formation of the copper-nitrene intermediate.

5.
ACS Org Inorg Au ; 3(5): 312-320, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37810414

RESUMO

We identify the factors that rule the selectivity in single-cleavage skeletal rearrangements promoted by gold(I) catalysts. We find that stereoconvergence is enabled by a rotational equilibrium when electron-rich substituents are used. The anomalous Z-selective skeletal rearrangement is found to be due to electronic factors, whereas endo-selectivity depends on both steric and electronic factors.

6.
JACS Au ; 3(6): 1742-1754, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37388697

RESUMO

A new generation of chiral gold(I) catalysts based on variations of complexes with JohnPhos-type ligands with a remote C2-symmetric 2,5-diarylpyrrolidine have been synthesized with different substitutions at the top and bottom aryl rings: from replacing the phosphine by a N-heterocyclic carbene (NHC) to increasing the steric hindrance with bis- or tris-biphenylphosphine scaffolds, or by directly attaching the C2-chiral pyrrolidine in the ortho-position of the dialkylphenyl phosphine. The new chiral gold(I) catalysts have been tested in the intramolecular [4+2] cycloaddition of arylalkynes with alkenes and in the atroposelective synthesis of 2-arylindoles. Interestingly, simpler catalysts with the C2-chiral pyrrolidine in the ortho-position of the dialkylphenyl phosphine led to the formation of opposite enantiomers. The chiral binding pockets of the new catalysts have been analyzed by DFT calculations. As revealed by non-covalent interaction plots, attractive non-covalent interactions between substrates and catalysts direct specific enantioselective folding. Furthermore, we have introduced the open-source tool NEST, specifically designed to account for steric effects in cylindrical-shaped complexes, which allows predicting experimental enantioselectivities in our systems.

7.
Chem Commun (Camb) ; 59(43): 6521-6524, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37158731

RESUMO

The factors driving the Ni0(binap)/CuI(phospherrox) cooperative asymmetric propargylation of aldimine esters are unveiled through DFT calculations. The system is fully explored accounting for conformational complexity and aggregation steps. The activation of the substrates proceeds independently, while the intercatalyst communication occurs both through indirect cooperativity, exchanging the non-innocent MeOCO2-, and through direct cooperation in the stereoselective C-C coupling driven by intercatalyst interactions.

8.
Chem ; 9(4): 1004-1016, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37125236

RESUMO

The regioselective C-H activation of arenes remains one of the most promising techniques for accessing highly important functionalized motifs. Such functionalizations can generally be achieved through directed and non-directed processes. The directed approach requires a covalently attached directing group (DG) on the substrate to induce reactivity and selectivity and therefore intrinsically leaves a functional group at the point of attachment within the molecule, even after the tailored DG has been removed. Conversely, non-directed methods typically suffer from regioselectivity issues, especially for unbiased substrates. Herein, we report a unique approach that employs weak charge-charge and charge-dipole interactions to enable the meta-selective activation and olefination of arenes to address these challenges in Pd catalysis. The charged moiety can easily be converted to uncharged simple arenes by hydrogenation or cross-coupling. In-depth mechanistic studies prove that the charge is responsible for the observed selectivity. We expect our studies to be generalizable and thereby enable further regioselective transformations.

9.
ACS Catal ; 13(5): 3020-3035, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36910869

RESUMO

The Ir-MaxPHOX-type catalysts demonstrated high catalytic performance in the hydrogenation of a wide range of nonchelating olefins with different geometries, substitution patterns, and degrees of functionalization. These air-stable and readily available catalysts have been successfully applied in the asymmetric hydrogenation of di-, tri-, and tetrasubstituted olefins (ee's up to 99%). The combination of theoretical calculations and deuterium labeling experiments led to the uncovering of the factors responsible for the enantioselectivity observed in the reaction, allowing the rationalization of the most suitable substrates for these Ir-catalysts.

10.
J Am Chem Soc ; 145(11): 6442-6452, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36883980

RESUMO

Metal-catalyzed propargylic transformations represent a powerful tool in organic synthesis to achieve new carbon-carbon and carbon-heteroatom bonds. However, detailed knowledge about the mechanistic intricacies related to the asymmetric formation of propargylic products featuring challenging heteroatom-substituted tertiary stereocenters is scarce and therefore provides an inspiring challenge. Here, we present a meticulous mechanistic analysis of a propargylic sulfonylation reaction promoted by a chiral Cu catalyst through a combination of experimental techniques and computational studies. Surprisingly, the enantio-discriminating step is not the coupling between the nucleophile and the propargylic precursor but rather the following proto-demetalation step, a scenario further validated by computing enantio-induction levels under other previously reported experimental conditions. A full mechanistic scenario for this propargylic substitution reaction is provided, including a catalyst pre-activation stage, a productive catalytic cycle, and an unanticipated non-linear effect at the Cu(I) oxidation level.

11.
J Am Chem Soc ; 145(9): 4975-4981, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812070

RESUMO

We describe the first catalytic generation of Fischer-type acyloxy Rh(II)-carbenes from carboxylic acids and Rh(II)-carbynoids. This novel class of transient donor/acceptor Rh(II)-carbenes evolved through a cyclopropanation process providing access to densely functionalized cyclopropyl-fused lactones with excellent diastereoselectivity. DFT calculations allowed the analysis of the properties of Rh(II)-carbynoids and acyloxy Rh(II)-carbenes as well as the characterization of the mechanism.

12.
J Am Chem Soc ; 144(23): 10608-10614, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35648453

RESUMO

The direct functionalization of Si-H bonds by the nitrene insertion methodology is described. A copper(I) complex bearing a trispyrazolylborate ligand catalyzes the transfer of a nitrene group from PhI═NTs to the Si-H bond of silanes, disilanes, and siloxanes, leading to the exclusive formation of Si-NH moieties in the first example of this transformation. The process tolerates other functionalities in the substrate such as several C-H bonds and alkyne and alkene moieties directly bonded to the silicon center. Density functional theory (DFT) calculations provide a mechanistic interpretation consisting of a Si-H homolytic cleavage and subsequent rebound to the Si-centered radical.


Assuntos
Iminas , Silanos , Aminação , Catálise , Iminas/química , Silanos/química
13.
Organometallics ; 41(9): 1099-1105, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35572769

RESUMO

We have recently developed a method for the synthesis of pyrrolidines and piperidines via intramolecular C-H amination of N-fluoride amides using [Tp x CuL] complexes as precatalysts [Tp x = tris(pyrazolyl)borate ligand and L = THF or CH3CN]. Herein, we report mechanistic studies on this transformation, which includes the isolation and structural characterization of a fluorinated copper(II) complex, [(TpiPr2OH)CuF] [TpiPr = hydrotris(3,5-diisopropylpyrazolyl)borate], pertinent to the mechanistic pathway. The effects of the nature of the Tp x ligand in the copper catalyst as well as of the halide in the N-X amides employed as reactants have been investigated both from experimental and computational perspectives.

14.
Dalton Trans ; 51(9): 3747-3759, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35168249

RESUMO

The phosphine-substituted Ru(II) polypyridyl complex, [RuII-(tpy)(pqn)(MeCN)]2+ (RuP), was disclosed to be an efficient photocatalyst for the reduction of CO2 to CO with excellent selectivity. In this work, density functional calculations were performed to elucidate the reaction mechanism and understand the origin of selectivity. The calculations showed that RuP was first excited to the singlet excited state, followed by intersystem crossing to produce a triplet species (3RuIII(L˙-)-S), which was then reduced by the sacrificial electron donor BIH to generate a RuII(L˙-) intermediate. The ligand of RuII(L˙-) was further reduced to produce a RuII(L2-) intermediate. The redox non-innocent nature of the tpy and pqn ligands endows the Ru center with an oxidation state of +2 after two one-electron reductions. RuII(L2-) nucleophilically attacks CO2, in which two electrons are delivered from the ligands to CO2, affording a RuII-COOH species after protonation. This is followed by the protonation of the hydroxyl moiety of RuII-COOH, coupled with the C-O bond cleavage, resulting in the formation of RuII-CO. Ultimately, CO is dissociated after two one-electron reductions. Protonation of RuII(L2-) to generate a RuII-hydride, a critical intermediate for the production of formate and H2, turns out to be kinetically less favorable, even though it is thermodynamically more favorable. This fact is due to the presence of a Ru2+ ion in the reduced catalyst, which disfavors its protonation.

15.
J Org Chem ; 87(1): 363-372, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34935370

RESUMO

Bimolecular nucleophilic substitution is one of the fundamental reactions in organic chemistry, yet there is still knowledge to be gained on the role of the nucleophile and the substrate. A statistical treatment of over 600 density functional theory (DFT)-computed barriers for bimolecular nucleophilic substitution at methyl derivatives (SN2@C) leads to the identification of numerical descriptors that best represent the entering and leaving ability of 26 different nucleophiles. The treatment is based on singular value decomposition (SVD) of a matrix of computed energy barriers. The current work represents the extension to a problem of reactivity of the hidden descriptor methodology that we had previously developed for the thermodynamic problem of bond dissociation energies in transition-metal complexes. The analysis of the results shows that a single descriptor is sufficient. This hidden descriptor has different values for nucleophilic and leaving abilities and, contrary to expectation, does not correlate especially well with either frontier molecular orbital descriptors or solvation descriptors. In contrast, it correlates with other thermodynamic and geometric parameters. This statistical procedure can be in principle extended to additional chemical fragments and other reactions.

16.
J Am Chem Soc ; 143(46): 19406-19416, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34761900

RESUMO

The mechanistic understanding of catalytic radical reactions currently lags behind the flourishing development of new types of catalytic activation. Herein, an innovative single electron transfer (SET) model has been expanded by using the nonadiabatic crossing integrated with the rate-determining step of 1,5-hydrogen atom transfer (HAT) reaction to provide the control mechanism of radical decay dynamics through calculating excited-state relaxation paths of a paradigm example of the amide-directed distal sp3 C-H bond alkylation mediated by Ir-complex-based photocatalysts. The stability of carbon radical intermediates, the functional hindrance associated with the back SET, and the energy inversion between the reactive triplet and closed-shell ground states were verified to be key factors in improving catalytic efficiency via blocking radical inhibition. The expanded SET model associated with the dynamic behaviors and kinetic data could guide the design and manipulation of visible-light-driven inert bond activation by the utilization of photocatalysts bearing more or less electron-withdrawing groups and the comprehensive considerations of kinetic solvent effects and electron-withdrawing effects of substrates.

17.
Organometallics ; 40(12): 1997-2007, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34295014

RESUMO

The reactions of dppf-nickel(0) with alkyl halides proceed via three-coordinate nickel(0) intermediates of the form [Ni(dppf)(L)]. The effects of the identity of the added ligand (L) on catalyst speciation and the rates of reactions of [Ni(COD)(dppf)] with alkyl halides have been investigated using kinetic experiments and density functional theory calculations. A series of monodentate ligands have been investigated in attempts to identify trends in reactivity. Sterically bulky and electron-donating ligands are found to decrease the reaction rate. It was found that (i) the halide abstraction step is not always irreversible and the subsequent recombination of a nickel(I) complex with an alkyl halide can have a significant effect on the overall rate of the reaction and (ii) some ligands lead to very stable [Ni(dppf)(L)2] species. The yields of prototypical (dppf)nickel-catalyzed Kumada cross-coupling reactions of alkyl halides are significantly improved by the addition of free ligands, which provides another important variable to consider when optimizing nickel-catalyzed reactions of alkyl halides.

18.
ChemSusChem ; 14(13): 2763-2768, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-33843150

RESUMO

Mechanochemistry is an emerging field with many potential applications in sustainable chemistry. But despite the growing interest in the field, its underlying mechanistic foundations are not fully understood yet. This work presents the application of computational tools, such as DFT calculations in continuum and microkinetic modeling, to the analysis of mechanically activated procedures. Two reactions reported in previous experimental publications were studied: (i) a series of Diels-Alder reactions and (ii) the synthesis of sulfonylguanidines. Calculations succeed in reproducing experimentally reported reaction times. The procedures were mostly standard, coupled with some sensitive choices in terms of starting concentrations and dielectric constant. This means that these particular reactions accelerated by ball milling followed the same mechanism as the equivalent reactions in solution. The implications of this result on the general picture of mechanochemical processes are discussed.

19.
Angew Chem Int Ed Engl ; 60(20): 11217-11221, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33739577

RESUMO

The potential access to CoIV species for promoting transformations that are particularly challenging at CoIII still remains underexploited in the context of Cp*Co-catalyzed C-H functionalization reactions. Herein, we disclose a combined experimental and computational strategy for uncovering the participation of Cp*CoIV species in a Cp*Co-mediated C-S bond-reductive elimination. These studies support the intermediacy of high-valent Cp*Co species in C-H functionalization reactions, under oxidative conditions, when involving nucleophilic coupling partners.

20.
J Am Chem Soc ; 143(12): 4837-4843, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33733762

RESUMO

Many transition-metal complexes MLn decompose diazo compounds N2═CR1R2 generating metal-carbenes LnM═CR1R2 which transfer the carbene group to other substrates, constituting an important tool in organic synthesis. All previous reports have shown that the CR1R2 fragment at the metal-carbene remains intact from the parent diazo compound. Herein we report the detection and isolation of a monosubstituted copper carbene where the CR1R2 ligand has undergone a modification from the initial diazo reagent. When TpMsCu(THF) (TpMs = hydrotris(3-mesityl)pyrazolylborate ligand) was reacted with N,N-diethyl diazoacetamide [N2═C(H)(CONEt2)], the stable copper carbene TpMsCu═C(H)(NEt2) was isolated, resulting from a decarbonylation process, with carbon monoxide being trapped as TpMsCu(CO). The simultaneous observation of products derived from the intramolecular carbene insertion reaction into C-H bonds demonstrates that the expected TpMsCu═C(H)(CONEt2) complex is also formed. Experimental data, DFT calculations, and microkinetic models allow us to propose that the latter undergoes CO loss en route to the former.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...