Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS One ; 12(2): e0171067, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28152086

RESUMO

Invariant NKT (iNKT) cells can be activated to stimulate a broad inflammatory response. In murine models of sickle cell disease (SCD), interruption of iNKT cell activity prevents tissue injury from vaso-occlusion. NKTT120 is an anti-iNKT cell monoclonal antibody that has the potential to rapidly and specifically deplete iNKT cells and, potentially, prevent vaso-occlusion. We conducted an open-label, multi-center, single-ascending-dose study of NKTT120 to determine its pharmacokinetics, pharmacodynamics and safety in steady-state patients with SCD. Doses were escalated in a 3+3 study design over a range from 0.001 mg/kg to 1.0 mg/kg. Twenty-one adults with SCD were administered NKTT120 as part of 7 dose cohorts. Plasma levels of NKTT120 predictably increased with higher doses. Median half-life of NKTT120 was 263 hours. All subjects in the higher dose cohorts (0.1 mg/kg, 0.3 mg/kg, and 1 mg/kg) demonstrated decreased iNKT cells below the lower limit of quantification within 6 hours after infusion, the earliest time point at which they were measured. In those subjects who received the two highest doses of NKTT120 (0.3, 1 mg/kg), iNKT cells were not detectable in the peripheral blood for a range of 2 to 5 months. There were no serious adverse events in the study deemed to be related to NKTT120. In adults with SCD, NKTT120 produced rapid, specific and sustained iNKT cell depletion without any infusional toxicity or attributed serious adverse events. The next step is a trial to determine NKTT120's ability to decrease rate of vaso-occlusive pain episodes. TRIAL REGISTRATION: clinicaltrials.gov NCT01783691.


Assuntos
Anemia Falciforme/imunologia , Anemia Falciforme/terapia , Anticorpos Monoclonais Humanizados/uso terapêutico , Depleção Linfocítica/métodos , Células T Matadoras Naturais/imunologia , Adolescente , Adulto , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacocinética , Criança , Estudos de Coortes , Feminino , Meia-Vida , Humanos , Masculino , Adulto Jovem
2.
PLoS One ; 10(10): e0140729, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26474487

RESUMO

Invariant Natural Killer T (iNKT) cells are a T cell subset expressing an invariant T Cell Receptor (TCR) that recognizes glycolipid antigens rather than peptides. The cells have both innate-like rapid cytokine release, and adaptive-like thymic positive selection. iNKT cell activation has been implicated in the pathogenesis of allergic asthma and inflammatory diseases, while reduced iNKT cell activation promotes infectious disease, cancer and certain autoimmune diseases such as Type 1 diabetes (T1D). Therapeutic means to reduce or deplete iNKT cells could treat inflammatory diseases, while approaches to promote their activation may have potential in certain infectious diseases, cancer or autoimmunity. Thus, we developed invariant TCR-specific monoclonal antibodies to better understand the role of iNKT cells in disease. We report here the first monoclonal antibodies specific for the mouse invariant TCR that by modifying the Fc construct can specifically deplete or activate iNKT cells in vivo in otherwise fully immuno-competent animals. We have used both the depleting and activating version of the antibody in the NOD model of T1D. As demonstrated previously using genetically iNKT cell deficient NOD mice, and in studies of glycolipid antigen activated iNKT cells in standard NOD mice, we found that antibody mediated depletion or activation of iNKT cells respectively accelerated and retarded T1D onset. In BALB/c mice, ovalbumin (OVA) mediated airway hyper-reactivity (AHR) was abrogated with iNKT cell depletion prior to OVA sensitization, confirming studies in knockout mice. Depletion of iNKT cells after sensitization had no effect on AHR in the conducting airways but did reduce AHR in the lung periphery. This result raises caution in the interpretation of studies that use animals that are genetically iNKT cell deficient from birth. These activating and depleting antibodies provide a novel tool to assess the therapeutic potential of iNKT cell manipulation.


Assuntos
Anticorpos Monoclonais Murinos/farmacologia , Asma/imunologia , Diabetes Mellitus Tipo 1/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Animais , Anticorpos Monoclonais Murinos/imunologia , Asma/genética , Asma/patologia , Asma/terapia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Depleção Linfocítica/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Células T Matadoras Naturais/patologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
3.
PLoS One ; 8(9): e76692, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086759

RESUMO

Invariant Natural Killer T (iNKT) cells are a subset of T cells recognizing glycolipid antigens presented by CD1d. Human iNKT cells express a conserved T cell receptor (TCR)-α chain (Vα24-Jα18) paired with a specific beta chain, Vß11. The cells are both innate-like, with rapid cytokine release, and adaptive-like, including thymic positive selection. Over activation of iNKT cells can mediate tissue injury and inflammation in multiple organ systems and play a role in mediating the pathology associated with clinically important inflammatory diseases. At the same time, iNKT cell activation can play a role in protecting against infectious disease and cancer or modulate certain autoimmune diseases through its impact on both the innate and adaptive immune system. This suggests that approaches to cause iNKT cell reduction and/or depletion could treat inflammatory diseases while approaches to promote activation may have therapeutic potential in certain infections, cancer or autoimmune disease. This report summarizes the characterization of a humanized monoclonal depleting antibody (NKTT120) in the cynomolgus macaque. NKTT120 is being developed to treat iNKT mediated inflammation that is associated with chronic inflammatory conditions like sickle cell disease and asthma. NKTT120 binds to human iTCRs and to FCγRI and FCγRIII and has been shown to kill target cells in an ADCC assay at low concentrations consistent with the FCγR binding. iNKT cells were depleted within 24 hours in cynomolgus macaques, but T cell, B cell, and NK cell frequencies were unchanged. iNKT cell recovery was dose and time dependent. T cell dependent antigen responses were not impaired by NKTT120 mediated iNKT depletion as measured by response to KLH challenge. NKTT120 administration did not induce an inflammatory cytokine release at doses up to 10 mg/kg. These data support the use of NKTT120 as an intervention in inflammatory diseases where iNKT reduction or depletion could be beneficial.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Especificidade de Anticorpos , Células T Matadoras Naturais/imunologia , Animais , Relação Dose-Resposta à Radiação , Feminino , Humanos , Inflamação/imunologia , Macaca fascicularis
4.
Ann Intern Med ; 150(7): 493-5, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19258550

RESUMO

The coverage, cost, and quality problems of the U.S. health care system are evident. Sustainable health care reform must go beyond financing expanded access to care to substantially changing the organization and delivery of care. The FRESH-Thinking Project (www.fresh-thinking.org) held a series of workshops during which physicians, health policy experts, health insurance executives, business leaders, hospital administrators, economists, and others who represent diverse perspectives came together. This group agreed that the following 8 recommendations are fundamental to successful reform: 1. Replace the current fee-for-service payment system with a payment system that encourages and rewards innovation in the efficient delivery of quality care. The new payment system should invest in the development of outcome measures to guide payment. 2. Establish a securely funded, independent agency to sponsor and evaluate research on the comparative effectiveness of drugs, devices, and other medical interventions. 3. Simplify and rationalize federal and state laws and regulations to facilitate organizational innovation, support care coordination, and streamline financial and administrative functions. 4. Develop a health information technology infrastructure with national standards of interoperability to promote data exchange. 5. Create a national health database with the participation of all payers, delivery systems, and others who own health care data. Agree on methods to make de-identified information from this database on clinical interventions, patient outcomes, and costs available to researchers. 6. Identify revenue sources, including a cap on the tax exclusion of employer-based health insurance, to subsidize health care coverage with the goal of insuring all Americans. 7. Create state or regional insurance exchanges to pool risk, so that Americans without access to employer-based or other group insurance could obtain a standard benefits package through these exchanges. Employers should also be allowed to participate in these exchanges for their employees' coverage. 8. Create a health coverage board with broad stakeholder representation to determine and periodically update the affordable standard benefit package available through state or regional insurance exchanges.


Assuntos
Reforma dos Serviços de Saúde/organização & administração , Cobertura Universal do Seguro de Saúde/organização & administração , Regulamentação Governamental , Reforma dos Serviços de Saúde/economia , Humanos , Reembolso de Seguro de Saúde/economia , Gestão da Qualidade Total/economia , Estados Unidos , Cobertura Universal do Seguro de Saúde/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...