Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18184, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875531

RESUMO

For the purpose of understanding, the governing system of partial differential equations for synovial fluid flow velocity and temperature distribution in the knee joint has been successfully solved for the first time. Therefore, such an article is shedding light on the convective diffusion of the viscous flow along the articular surfaces of the joints through the introduction of power-law fluids with different features of permeability, and stagnation point flow along a magnetic field. Henceforth, the frictional energy causes the knee joint's temperature to increase. By way of filtration, heated synovial fluid reaches the articular cartilage and provides heat to the bone and cartilage. The lubricant in the joint cavity is properly mixed with this cooled fluid. A rectangular region flow and diffusion model is used to define the issue, thermal diffusion and flow inside the intra-articular gap, as well as flow and thermal diffusion within the porous matrix covering the approaching bones at the joint. Using the similarity solution approach, the linked mixed boundary value problem is addressed. The fluid has been shown to resist moving into or out of the cartilage in certain sick and/or aging synovial joints, causing the temperature to increase. By changing the values of the parameters from their usual levels, it is observed that the temperature did increase in aged and sick joints which impact cartilage and/or synovial fluid degradation.

2.
Nanomaterials (Basel) ; 12(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500877

RESUMO

Current study solves heat transfer and fluid flow problem in Newtonian and non-Newtonian nano-fluids through a permeable surface with a magnetic field effects which is done in the presence of injection and suction for the first time. In order to solve the governing partial differential equations numerically, we used the Runge-Kutta Fehlberg (RKF45) technique in which the similarity transformation method is applied. This approach converts the governing partial differential equations into ordinary differential equations. In this particular investigation nano-particles of copper, copper oxide, titanium dioxide, and aluminium oxide are studied by considering CMC/water as a base fluid with the effect of magnetic field on the classical Blasius and Sakiadis flows of nano-fluids. Validation is carried out using the previously obtained numerical findings. We looked at the power-law index (n), the volume fraction (φ) of nano-particles and the permeability parameter (fw) which affects the flow of nano-fluid and the transfer of heat. Non-Newtonian nano-fluid demonstrates superior performance in terms of heat transfer when compared to Newtonian nano-fluid in both the injection and the impermeable surfaces. Altering the nano-particles' composition, on the other hand, has a far greater impact on the heat transfer process that occurs during suction. Graphics show the impacts of governing physical parameters on Blasius and Sakiadis flow velocity, temperature, skin friction coefficient, and reduced Nusselt number. Physical and engineering interest are explored in detail.

3.
Sci Rep ; 12(1): 18992, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348000

RESUMO

Stokes's equation in the fluid domain and Brinkman's equation in the porous media are combined in the current study which is designated by the Stokes-Brinkman coupling. The current paper gives a theoretical analysis of the Stokes-Brinkman coupling. It has been shown that such a model is a good match for the knee joint. A flow model has been investigated in order to get a better understanding of the convective diffusion of the viscous flow along the articular surfaces between the joints. The Beavers and Joseph slip conditions which are a specific boundary condition for the synovial fluid are used to solve the governing system of partial differential equations for the synovial fluid and the results are provided here. We develop formulas for the interfacial velocity for both flow through special slip condition and analyse the link between the slip parameters [Formula: see text] and [Formula: see text]. Thus, the damping force due to the porous medium naturally when we non-dimensionalize, some parameter which are controlling the structure like, [Formula: see text] and [Formula: see text]. Through the development of an analytical solution and numerical simulation (using the finite volume approach) it is hoped that the mechanisms of nutritional transport into the synovial joint will be better understood. According to the data the average concentration has a negative connection with both the axial distance and the duration spent in the experiment. Many graphs have been utilized to gain understanding into the problem's various characteristics including velocity and concentration, among others. Hyaluronate (HA) is considered to be present in porous cartilage surfaces and the viscosity of synovial fluid fluctuates in response to the amount of HA present.


Assuntos
Articulação do Joelho , Líquido Sinovial , Humanos , Porosidade , Viscosidade , Simulação por Computador , Líquido Sinovial/fisiologia
4.
Materials (Basel) ; 15(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407764

RESUMO

This article introduces magneto-thermoelastic exchanges in an unbounded medium with a spherical cavity. A refined multi-time-derivative dual-phase-lag thermoelasticity model is applied for this reason. The surface of the spherical hole is considered traction-free and under both constant heating and external magnetic field. A generalized magneto-thermoelastic coupled solution is developed utilizing Laplace's transform. The field variables are shown graphically and examined to demonstrate the impacts of the magnetic field, phase-lags, and other parameters on the field quantities. The present theory is examined to assess its validity including comparison with the existing literature.

5.
Sci Rep ; 10(1): 4417, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157107

RESUMO

This article aims to investigate the wave propagation of generalized thermoelastic half-plane under the effect of thermal loading due to laser pulse with and without energy dissipation. The normal mode method is proposed to solve the problem and get numerical results for the field quantities. The outcomes of the physical quantities have been illustrated graphically and reported to compare the simple Green-Naghdi II and III and their modified single-, dual-, and three-phase-lag models. The graphical outcomes indicate that the different types of Green-Naghdi models with thermal relaxations have great effects on the temperature, displacements, dilatation and stresses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...