Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D67-D71, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37971299

RESUMO

The Bioinformation and DNA Data Bank of Japan (DDBJ) Center (https://www.ddbj.nig.ac.jp) provides database archives that cover a wide range of fields in life sciences. As a founding member of the International Nucleotide Sequence Database Collaboration (INSDC), DDBJ accepts and distributes nucleotide sequence data as well as their study and sample information along with the National Center for Biotechnology Information in the United States and the European Bioinformatics Institute (EBI). Besides INSDC databases, the DDBJ Center provides databases for functional genomics (GEA: Genomic Expression Archive), metabolomics (MetaboBank) and human genetic and phenotypic data (JGA: Japanese Genotype-phenotype Archive). These database systems have been built on the National Institute of Genetics (NIG) supercomputer, which is also open for domestic life science researchers to analyze large-scale sequence data. This paper reports recent updates on the archival databases and the services of the DDBJ Center, highlighting the newly redesigned MetaboBank. MetaboBank uses BioProject and BioSample in its metadata description making it suitable for multi-omics large studies. Its collaboration with MetaboLights at EBI brings synergy in locating and reusing public data.


Assuntos
Bases de Dados de Ácidos Nucleicos , Metabolômica , Metadados , Humanos , Biologia Computacional , Genômica , Internet , Japão , Multiômica/métodos
2.
Nucleic Acids Res ; 51(D1): D101-D105, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36420889

RESUMO

The Bioinformation and DNA Data Bank of Japan (DDBJ) Center (https://www.ddbj.nig.ac.jp) maintains database archives that cover a wide range of fields in life sciences. As a founding member of the International Nucleotide Sequence Database Collaboration (INSDC), our primary mission is to collect and distribute nucleotide sequence data, as well as their study and sample information, in collaboration with the National Center for Biotechnology Information in the United States and the European Bioinformatics Institute. In addition to INSDC resources, the Center operates databases for functional genomics (GEA: Genomic Expression Archive), metabolomics (MetaboBank), and human genetic and phenotypic data (JGA: Japanese Genotype-Phenotype Archive). These databases are built on the supercomputer of the National Institute of Genetics, whose remaining computational capacity is actively utilized by domestic researchers for large-scale biological data analyses. Here, we report our recent updates and the activities of our services.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genômica , Humanos , Estados Unidos , Biologia Computacional , Computadores , Sequência de Bases , Japão , Internet
3.
Nucleic Acids Res ; 50(D1): D102-D105, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34751405

RESUMO

The Bioinformation and DDBJ (DNA Data Bank of Japan) Center (DDBJ Center; https://www.ddbj.nig.ac.jp) operates archival databases that collect nucleotide sequences, study and sample information, and distribute them without access restriction to progress life science research as a member of the International Nucleotide Sequence Database Collaboration (INSDC), in collaboration with the National Center for Biotechnology Information (NCBI) and the European Bioinformatics Institute. Besides the INSDC databases, the DDBJ Center also provides the Genomic Expression Archive for functional genomics data and the Japanese Genotype-phenotype Archive for human data requiring controlled access. Additionally, the DDBJ Center started a new public repository, MetaboBank, for experimental raw data and metadata from metabolomics research in October 2020. In response to the COVID-19 pandemic, the DDBJ Center openly shares SARS-CoV-2 genome sequences in collaboration with Shizuoka Prefecture and Keio University. The operation of DDBJ is based on the National Institute of Genetics (NIG) supercomputer, which is open for large-scale sequence data analysis for life science researchers. This paper reports recent updates on the archival databases and the services of DDBJ.


Assuntos
Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Genoma Microbiano , Japão , Metabolômica , SARS-CoV-2/genética , Transcriptoma
4.
Nucleic Acids Res ; 49(D1): D71-D75, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33156332

RESUMO

The Bioinformation and DDBJ Center (DDBJ Center, https://www.ddbj.nig.ac.jp) provides databases that capture, preserve and disseminate diverse biological data to support research in the life sciences. This center collects nucleotide sequences with annotations, raw sequencing data, and alignment information from high-throughput sequencing platforms, and study and sample information, in collaboration with the National Center for Biotechnology Information (NCBI) and the European Bioinformatics Institute (EBI). This collaborative framework is known as the International Nucleotide Sequence Database Collaboration (INSDC). In collaboration with the National Bioscience Database Center (NBDC), the DDBJ Center also provides a controlled-access database, the Japanese Genotype-phenotype Archive (JGA), which archives and distributes human genotype and phenotype data, requiring authorized access. The NBDC formulates guidelines and policies for sharing human data and reviews data submission and use applications. To streamline all of the processes at NBDC and JGA, we have integrated the two systems by introducing a unified login platform with a group structure in September 2020. In addition to the public databases, the DDBJ Center provides a computer resource, the NIG supercomputer, for domestic researchers to analyze large-scale genomic data. This report describes updates to the services of the DDBJ Center, focusing on the NBDC and JGA system enhancements.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos/organização & administração , Ácidos Nucleicos/química , Análise de Sequência de DNA/estatística & dados numéricos , Análise de Sequência de RNA/estatística & dados numéricos , Academias e Institutos , Sequência de Bases , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , Japão , Ácidos Nucleicos/genética , Fenótipo
5.
Nucleic Acids Res ; 48(D1): D45-D50, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31724722

RESUMO

The Bioinformation and DDBJ Center (https://www.ddbj.nig.ac.jp) in the National Institute of Genetics (NIG) maintains a primary nucleotide sequence database as a member of the International Nucleotide Sequence Database Collaboration (INSDC) in partnership with the US National Center for Biotechnology Information and the European Bioinformatics Institute. The NIG operates the NIG supercomputer as a computational basis for the construction of DDBJ databases and as a large-scale computational resource for Japanese biologists and medical researchers. In order to accommodate the rapidly growing amount of deoxyribonucleic acid (DNA) nucleotide sequence data, NIG replaced its supercomputer system, which is designed for big data analysis of genome data, in early 2019. The new system is equipped with 30 PB of DNA data archiving storage; large-scale parallel distributed file systems (13.8 PB in total) and 1.1 PFLOPS computation nodes and graphics processing units (GPUs). Moreover, as a starting point of developing multi-cloud infrastructure of bioinformatics, we have also installed an automatic file transfer system that allows users to prevent data lock-in and to achieve cost/performance balance by exploiting the most suitable environment from among the supercomputer and public clouds for different workloads.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Genômica/métodos , Software , Navegador , Japão , Design de Software
6.
Nucleic Acids Res ; 47(D1): D69-D73, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30357349

RESUMO

The Genomic Expression Archive (GEA) for functional genomics data from microarray and high-throughput sequencing experiments has been established at the DNA Data Bank of Japan (DDBJ) Center (https://www.ddbj.nig.ac.jp), which is a member of the International Nucleotide Sequence Database Collaboration (INSDC) with the US National Center for Biotechnology Information and the European Bioinformatics Institute. The DDBJ Center collects nucleotide sequence data and associated biological information from researchers and also services the Japanese Genotype-phenotype Archive (JGA) with the National Bioscience Database Center for collecting human data. To automate the submission process, we have implemented the DDBJ BioSample validator which checks submitted records, auto-corrects their format, and issues error messages and warnings if necessary. The DDBJ Center also operates the NIG supercomputer, prepared for analyzing large-scale genome sequences. We now offer a secure platform specifically to handle personal human genomes. This report describes database activities for INSDC and JGA over the past year, the newly launched GEA, submission, retrieval, and analysis services available in our supercomputer system and their recent developments.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Regulação da Expressão Gênica , Genômica , Genômica/métodos , Humanos , Software , Interface Usuário-Computador , Navegador , Fluxo de Trabalho
7.
Nucleic Acids Res ; 46(D1): D30-D35, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29040613

RESUMO

The DNA Data Bank of Japan (DDBJ) Center (http://www.ddbj.nig.ac.jp) has been providing public data services for 30 years since 1987. We are collecting nucleotide sequence data and associated biological information from researchers as a member of the International Nucleotide Sequence Database Collaboration (INSDC), in collaboration with the US National Center for Biotechnology Information and the European Bioinformatics Institute. The DDBJ Center also services the Japanese Genotype-phenotype Archive (JGA) with the National Bioscience Database Center to collect genotype and phenotype data of human individuals. Here, we outline our database activities for INSDC and JGA over the past year, and introduce submission, retrieval and analysis services running on our supercomputer system and their recent developments. Furthermore, we highlight our responses to the amended Japanese rules for the protection of personal information and the launch of the DDBJ Group Cloud service for sharing pre-publication data among research groups.


Assuntos
Bases de Dados de Ácidos Nucleicos , Academias e Institutos , Computação em Nuvem , Biologia Computacional , Confidencialidade/legislação & jurisprudência , Bases de Dados de Ácidos Nucleicos/história , Bases de Dados de Ácidos Nucleicos/tendências , Europa (Continente) , Estudos de Associação Genética , História do Século XX , História do Século XXI , Humanos , Armazenamento e Recuperação da Informação , Cooperação Internacional , Japão , National Library of Medicine (U.S.) , Estados Unidos
8.
Nucleic Acids Res ; 45(D1): D25-D31, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27924010

RESUMO

The DNA Data Bank of Japan (DDBJ) (http://www.ddbj.nig.ac.jp) has been providing public data services for thirty years (since 1987). We are collecting nucleotide sequence data from researchers as a member of the International Nucleotide Sequence Database Collaboration (INSDC, http://www.insdc.org), in collaboration with the US National Center for Biotechnology Information (NCBI) and European Bioinformatics Institute (EBI). The DDBJ Center also services Japanese Genotype-phenotype Archive (JGA), with the National Bioscience Database Center to collect human-subjected data from Japanese researchers. Here, we report our database activities for INSDC and JGA over the past year, and introduce retrieval and analytical services running on our supercomputer system and their recent modifications. Furthermore, with the Database Center for Life Science, the DDBJ Center improves semantic web technologies to integrate and to share biological data, for providing the RDF version of the sequence data.


Assuntos
Bases de Dados de Ácidos Nucleicos , Análise de Sequência de DNA , Animais , Genótipo , Humanos , Internet , Japão , Anotação de Sequência Molecular , Fenótipo , Software
9.
Nucleic Acids Res ; 44(D1): D51-7, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26578571

RESUMO

The DNA Data Bank of Japan Center (DDBJ Center; http://www.ddbj.nig.ac.jp) maintains and provides public archival, retrieval and analytical services for biological information. The contents of the DDBJ databases are shared with the US National Center for Biotechnology Information (NCBI) and the European Bioinformatics Institute (EBI) within the framework of the International Nucleotide Sequence Database Collaboration (INSDC). Since 2013, the DDBJ Center has been operating the Japanese Genotype-phenotype Archive (JGA) in collaboration with the National Bioscience Database Center (NBDC) in Japan. In addition, the DDBJ Center develops semantic web technologies for data integration and sharing in collaboration with the Database Center for Life Science (DBCLS) in Japan. This paper briefly reports on the activities of the DDBJ Center over the past year including submissions to databases and improvements in our services for data retrieval, analysis, and integration.


Assuntos
Bases de Dados de Ácidos Nucleicos , Análise de Sequência de DNA , Ontologias Biológicas , Computadores , Genótipo , Fenótipo
10.
Nucleic Acids Res ; 43(Database issue): D18-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25477381

RESUMO

The DNA Data Bank of Japan Center (DDBJ Center; http://www.ddbj.nig.ac.jp) maintains and provides public archival, retrieval and analytical services for biological information. Since October 2013, DDBJ Center has operated the Japanese Genotype-phenotype Archive (JGA) in collaboration with our partner institute, the National Bioscience Database Center (NBDC) of the Japan Science and Technology Agency. DDBJ Center provides the JGA database system which securely stores genotype and phenotype data collected from individuals whose consent agreements authorize data release only for specific research use. NBDC has established guidelines and policies for sharing human-derived data and reviews data submission and usage requests from researchers. In addition to the JGA project, DDBJ Center develops Semantic Web technologies for data integration and sharing in collaboration with the Database Center for Life Science. This paper describes the overview of the JGA project, updates to the DDBJ databases, and services for data retrieval, analysis and integration.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genótipo , Fenótipo , Estudos de Associação Genética , Humanos , Internet , Análise de Sequência de DNA
11.
Stand Genomic Sci ; 9(3): 1275-7, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25197497

RESUMO

Microbial genome sequence submissions to the International Nucleotide Sequence Database Collaboration (INSDC) have been annotated with organism names that include the strain identifier. Each of these strain-level names has been assigned a unique 'taxid' in the NCBI Taxonomy Database. With the significant growth in genome sequencing, it is not possible to continue with the curation of strain-level taxids. In January 2014, NCBI will cease assigning strain-level taxids. Instead, submitters are encouraged provide strain information and rich metadata with their submission to the sequence database, BioProject and BioSample.

12.
Nucleic Acids Res ; 42(Database issue): D44-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24194602

RESUMO

The DNA Data Bank of Japan (DDBJ; http://www.ddbj.nig.ac.jp) maintains and provides archival, retrieval and analytical resources for biological information. This database content is shared with the US National Center for Biotechnology Information (NCBI) and the European Bioinformatics Institute (EBI) within the framework of the International Nucleotide Sequence Database Collaboration (INSDC). DDBJ launched a new nucleotide sequence submission system for receiving traditional nucleotide sequence. We expect that the new submission system will be useful for many submitters to input accurate annotation and reduce the time needed for data input. In addition, DDBJ has started a new service, the Japanese Genotype-phenotype Archive (JGA), with our partner institute, the National Bioscience Database Center (NBDC). JGA permanently archives and shares all types of individual human genetic and phenotypic data. We also introduce improvements in the DDBJ services and databases made during the past year.


Assuntos
Sequência de Bases , Bases de Dados de Ácidos Nucleicos , Anotação de Sequência Molecular , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , Fenótipo
13.
Nucleic Acids Res ; 41(Database issue): D25-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23180790

RESUMO

The DNA data bank of Japan (DDBJ, http://www.ddbj.nig.ac.jp) maintains a primary nucleotide sequence database and provides analytical resources for biological information to researchers. This database content is exchanged with the US National Center for Biotechnology Information (NCBI) and the European Bioinformatics Institute (EBI) within the framework of the International Nucleotide Sequence Database Collaboration (INSDC). Resources provided by the DDBJ include traditional nucleotide sequence data released in the form of 27 316 452 entries or 16 876 791 557 base pairs (as of June 2012), and raw reads of new generation sequencers in the sequence read archive (SRA). A Japanese researcher published his own genome sequence via DDBJ-SRA on 31 July 2012. To cope with the ongoing genomic data deluge, in March 2012, our computer previous system was totally replaced by a commodity cluster-based system that boasts 122.5 TFlops of CPU capacity and 5 PB of storage space. During this upgrade, it was considered crucial to replace and refactor substantial portions of the DDBJ software systems as well. As a result of the replacement process, which took more than 2 years to perform, we have achieved significant improvements in system performance.


Assuntos
Sequência de Bases , Bases de Dados de Ácidos Nucleicos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Análise de Sequência de DNA , Software
14.
Nucleic Acids Res ; 40(Database issue): D38-42, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22110025

RESUMO

The DNA Data Bank of Japan (DDBJ; http://www.ddbj.nig.ac.jp) maintains and provides archival, retrieval and analytical resources for biological information. The central DDBJ resource consists of public, open-access nucleotide sequence databases including raw sequence reads, assembly information and functional annotation. Database content is exchanged with EBI and NCBI within the framework of the International Nucleotide Sequence Database Collaboration (INSDC). In 2011, DDBJ launched two new resources: the 'DDBJ Omics Archive' (DOR; http://trace.ddbj.nig.ac.jp/dor) and BioProject (http://trace.ddbj.nig.ac.jp/bioproject). DOR is an archival database of functional genomics data generated by microarray and highly parallel new generation sequencers. Data are exchanged between the ArrayExpress at EBI and DOR in the common MAGE-TAB format. BioProject provides an organizational framework to access metadata about research projects and the data from the projects that are deposited into different databases. In this article, we describe major changes and improvements introduced to the DDBJ services, and the launch of two new resources: DOR and BioProject.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genômica , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA , Análise de Sequência de RNA
15.
Nucleic Acids Res ; 39(Database issue): D22-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21062814

RESUMO

The DNA Data Bank of Japan (DDBJ, http://www.ddbj.nig.ac.jp) provides a nucleotide sequence archive database and accompanying database tools for sequence submission, entry retrieval and annotation analysis. The DDBJ collected and released 3,637,446 entries/2,272,231,889 bases between July 2009 and June 2010. A highlight of the released data was archive datasets from next-generation sequencing reads of Japanese rice cultivar, Koshihikari submitted by the National Institute of Agrobiological Sciences. In this period, we started a new archive for quantitative genomics data, the DDBJ Omics aRchive (DOR). The DOR stores quantitative data both from the microarray and high-throughput new sequencing platforms. Moreover, we improved the content of the DDBJ patent sequence, released a new submission tool of the DDBJ Sequence Read Archive (DRA) which archives massive raw sequencing reads, and enhanced a cloud computing-based analytical system from sequencing reads, the DDBJ Read Annotation Pipeline. In this article, we describe these new functions of the DDBJ databases and support tools.


Assuntos
Bases de Dados de Ácidos Nucleicos , Sequência de Aminoácidos , Bases de Dados de Proteínas , Genômica , Anotação de Sequência Molecular , Patentes como Assunto , Software
16.
Nucleic Acids Res ; 38(Database issue): D33-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19850725

RESUMO

The DNA Data Bank of Japan (DDBJ) (http://www.ddbj.nig.ac.jp) has collected and released 1,701,110 entries/1,116,138,614 bases between July 2008 and June 2009. A few highlighted data releases from DDBJ were the complete genome sequence of an endosymbiont within protist cells in the termite gut and Cap Analysis Gene Expression tags for human and mouse deposited from the Functional Annotation of the Mammalian cDNA consortium. In this period, we started a novel user announcement service using Really Simple Syndication (RSS) to deliver a list of data released from DDBJ on a daily basis. Comprehensive visualization of a DDBJ release data was attempted by using a word cloud program. Moreover, a new archive for sequencing data from next-generation sequencers, the 'DDBJ Read Archive' (DRA), was launched. Concurrently, for read data registered in DRA, a semi-automatic annotation tool called the 'DDBJ Read Annotation Pipeline' was released as a preliminary step. The pipeline consists of two parts: basic analysis for reference genome mapping and de novo assembly and high-level analysis of structural and functional annotations. These new services will aid users' research and provide easier access to DDBJ databases.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Algoritmos , Animais , Biologia Computacional/tendências , Bases de Dados de Proteínas , Genoma Bacteriano , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Japão , Software
17.
Nucleic Acids Res ; 36(Database issue): D793-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18089548

RESUMO

Here we report the new features and improvements in our latest release of the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/), a comprehensive annotation resource for human genes and transcripts. H-InvDB, originally developed as an integrated database of the human transcriptome based on extensive annotation of large sets of full-length cDNA (FLcDNA) clones, now provides annotation for 120 558 human mRNAs extracted from the International Nucleotide Sequence Databases (INSD), in addition to 54 978 human FLcDNAs, in the latest release H-InvDB_4.6. We mapped those human transcripts onto the human genome sequences (NCBI build 36.1) and determined 34 699 human gene clusters, which could define 34 057 (98.1%) protein-coding and 642 (1.9%) non-protein-coding loci; 858 (2.5%) transcribed loci overlapped with predicted pseudogenes. For all these transcripts and genes, we provide comprehensive annotation including gene structures, gene functions, alternative splicing variants, functional non-protein-coding RNAs, functional domains, predicted sub cellular localizations, metabolic pathways, predictions of protein 3D structure, mapping of SNPs and microsatellite repeat motifs, co-localization with orphan diseases, gene expression profiles, orthologous genes, protein-protein interactions (PPI) and annotation for gene families. The current H-InvDB annotation resources consist of two main views: Transcript view and Locus view and eight sub-databases: the DiseaseInfo Viewer, H-ANGEL, the Clustering Viewer, G-integra, the TOPO Viewer, Evola, the PPI view and the Gene family/group.


Assuntos
Bases de Dados Genéticas , Genes , RNA Mensageiro/química , Animais , Mapeamento Cromossômico , DNA Complementar/química , Humanos , Internet , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/genética , Interface Usuário-Computador
18.
DNA Res ; 13(6): 245-54, 2006 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-17166861

RESUMO

A large number of complete microorganism genomes has been sequenced and submitted to the public database and then incorporated into our complete genome database, Genome Information Broker (GIB, http://gib.genes.nig.ac.jp/). However, when comparative genomics is carried out, researchers must be aware that there are protein-coding genes not confirmed by homology or motif search and that reliable protein-coding genes are missing. Therefore, we developed a protocol (Gene Trek in Prokaryote Space, GTPS) for finding possible protein-coding genes in bacterial genomes. GTPS assigns a degree of reliability to predicted protein-coding genes. We first systematically applied the protocol to the complete genomes of all 123 bacterial species and strains that were publicly available as of July 2003, and then to those of 183 species and strains available as of September 2004. We found a number of incorrect genes and several new ones in the genome data in question. We also found a way to estimate the total number of orthologous genes in the bacterial world.


Assuntos
Bactérias/classificação , Genes Bacterianos , Genética Microbiana , Genoma Bacteriano , Bactérias/genética , Biologia Computacional , DNA Bacteriano/genética , Sistemas de Gerenciamento de Base de Dados , Fases de Leitura Aberta , Células Procarióticas
19.
OMICS ; 10(2): 105-13, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16901214

RESUMO

The Third Party Annotation (TPA) project collects and presents high-quality annotation of nucleotide sequence. Annotation is submitted by researchers who have not themselves generated novel nucleotide sequence. In its first few years, the resource has proven to be popular with submitters from a range of biological research areas. Central to the project is the requirement for high-quality data, resulting from experimental and inferred analysis discussed in peer-reviewed publications. The data are divided into two tiers: those with experimental evidence and those with inferential evidence. Standards for TPA are detailed and illustrated with the aid of case studies.


Assuntos
Bases de Dados de Ácidos Nucleicos/normas , Genômica/normas , Animais , Coleta de Dados/normas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...