Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37510120

RESUMO

Osteosarcoma is a common type of bone tumor, particularly prevalent in children and adolescents between the ages of 5 and 25 who are experiencing growth spurts during puberty. Manual delineation of tumor regions in MRI images can be laborious and time-consuming, and results may be subjective and difficult to replicate. Therefore, a convolutional neural network (CNN) was developed to automatically segment osteosarcoma cancerous cells in three types of MRI images. The study consisted of five main stages. First, 3692 DICOM format MRI images were acquired from 46 patients, including T1-weighted, T2-weighted, and T1-weighted with injection of Gadolinium (T1W + Gd) images. Contrast stretching and median filter were applied to enhance image intensity and remove noise, and the pre-processed images were reconstructed into NIfTI format files for deep learning. The MRI images were then transformed to fit the CNN's requirements. A 3D U-Net architecture was proposed with optimized parameters to build an automatic segmentation model capable of segmenting osteosarcoma from the MRI images. The 3D U-Net segmentation model achieved excellent results, with mean dice similarity coefficients (DSC) of 83.75%, 85.45%, and 87.62% for T1W, T2W, and T1W + Gd images, respectively. However, the study found that the proposed method had some limitations, including poorly defined borders, missing lesion portions, and other confounding factors. In summary, an automatic segmentation method based on a CNN has been developed to address the challenge of manually segmenting osteosarcoma cancerous cells in MRI images. While the proposed method showed promise, the study revealed limitations that need to be addressed to improve its efficacy.

2.
Diagnostics (Basel) ; 13(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36766620

RESUMO

Malaria is a pressing medical issue in tropical and subtropical regions. Currently, the manual microscopic examination remains the gold standard malaria diagnosis method. Nevertheless, this procedure required highly skilled lab technicians to prepare and examine the slides. Therefore, a framework encompassing image processing and machine learning is proposed due to inconsistencies in manual inspection, counting, and staging. Here, a standardized segmentation framework utilizing thresholding and clustering is developed to segment parasites' stages of P. falciparum and P. vivax species. Moreover, a multi-stage classifier is designed for recognizing parasite species and staging in both species. Experimental results indicate the effectiveness of segmenting thick smear images based on Phansalkar thresholding garnered an accuracy of 99.86%. The employment of variance and new transferring process for the clustered members, enhanced k-means (EKM) clustering has successfully segmented all malaria stages with accuracy and an F1-score of 99.20% and 0.9033, respectively. In addition, the accuracies of parasite detection, species recognition, and staging obtained through a random forest (RF) accounted for 86.89%, 98.82%, and 90.78%, respectively, simultaneously. The proposed framework enables versatile malaria parasite detection and staging with an interactive result, paving the path for future improvements by utilizing the proposed framework on all others malaria species.

3.
Math Biosci Eng ; 19(2): 1721-1745, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35135226

RESUMO

Based on the Nottingham Histopathology Grading (NHG) system, mitosis cells detection is one of the important criteria to determine the grade of breast carcinoma. Mitosis cells detection is a challenging task due to the heterogeneous microenvironment of breast histopathology images. Recognition of complex and inconsistent objects in the medical images could be achieved by incorporating domain knowledge in the field of interest. In this study, the strategies of the histopathologist and domain knowledge approach were used to guide the development of the image processing framework for automated mitosis cells detection in breast histopathology images. The detection framework starts with color normalization and hyperchromatic nucleus segmentation. Then, a knowledge-assisted false positive reduction method is proposed to eliminate the false positive (i.e., non-mitosis cells). This stage aims to minimize the percentage of false positive and thus increase the F1-score. Next, features extraction was performed. The mitosis candidates were classified using a Support Vector Machine (SVM) classifier. For evaluation purposes, the knowledge-assisted detection framework was tested using two datasets: a custom dataset and a publicly available dataset (i.e., MITOS dataset). The proposed knowledge-assisted false positive reduction method was found promising by eliminating at least 87.1% of false positive in both the dataset producing promising results in the F1-score. Experimental results demonstrate that the knowledge-assisted detection framework can achieve promising results in F1-score (custom dataset: 89.1%; MITOS dataset: 88.9%) and outperforms the recent works.


Assuntos
Neoplasias da Mama , Mama , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Mitose , Máquina de Vetores de Suporte , Microambiente Tumoral
4.
Comput Math Methods Med ; 2012: 637360, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23082089

RESUMO

Malaria is one of the serious global health problem, causing widespread sufferings and deaths in various parts of the world. With the large number of cases diagnosed over the year, early detection and accurate diagnosis which facilitates prompt treatment is an essential requirement to control malaria. For centuries now, manual microscopic examination of blood slide remains the gold standard for malaria diagnosis. However, low contrast of the malaria and variable smears quality are some factors that may influence the accuracy of interpretation by microbiologists. In order to reduce this problem, this paper aims to investigate the performance of the proposed contrast enhancement techniques namely, modified global and modified linear contrast stretching as well as the conventional global and linear contrast stretching that have been applied on malaria images of P. vivax species. The results show that the proposed modified global and modified linear contrast stretching techniques have successfully increased the contrast of the parasites and the infected red blood cells compared to the conventional global and linear contrast stretching. Hence, the resultant images would become useful to microbiologists for identification of various stages and species of malaria.


Assuntos
Malária/sangue , Malária/diagnóstico , Algoritmos , Animais , Cor , Eritrócitos/parasitologia , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Malária/parasitologia , Microbiologia , Microscopia/métodos , Plasmodium vivax/parasitologia , Trofozoítos/metabolismo
5.
Artif Intell Med ; 42(1): 1-11, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17996432

RESUMO

OBJECTIVE: This paper proposes to develop an automated diagnostic system for cervical pre-cancerous. METHODS AND DATA SAMPLES: The proposed automated diagnostic system consists of two parts; an automatic feature extraction and an intelligent diagnostic. In the automatic feature extraction, the system automatically extracts four cervical cells features (i.e. nucleus size, nucleus grey level, cytoplasm size and cytoplasm grey level). A new features extraction algorithm called region-growing-based features extraction (RGBFE) is proposed to extract the cervical cells features. The extracted features will then be fed as input data to the intelligent diagnostic part. A new artificial neural network (ANN) architecture called hierarchical hybrid multilayered perceptron (H(2)MLP) network is proposed to predict the cervical pre-cancerous stage into three classes, namely normal, low grade intra-epithelial squamous lesion (LSIL) and high grade intra-epithelial squamous lesion (HSIL). We empirically assess the capability of the proposed diagnostic system using 550 reported cases (211 normal cases, 143 LSIL cases and 196 HSIL cases). RESULTS: For evaluation of the automatic feature extraction performance, correlation test approach was used to determine the capability of the RGBFE algorithm as compared to manual extraction by cytotechnologist. The manual extraction of size was recorded in micrometer while the automatic extraction of size was recorded in number of pixels. Region color was recorded in mean of grey level value for both manual and automatic extraction. The results show that the estimated size and mean of grey level have strong linear relationship (correlation test more than 0.8) with those extracted manually by cytotechnologist. Hence, the size of nucleus, size of cytoplasm and grey level of cytoplasm created very strong linear relationship with correlation test more than 0.95 (approaching one). For the intelligent diagnostic, the performance of the H(2)MLP network was compared with three standard ANNs (i.e. multilayered perceptron (MLP), radial basis function (RBF) and hybrid multilayered perceptron (HMLP)). The performance was done based on accuracy, sensitivity, specificity, false negative and false positive. The H(2)MLP network performed the best diagnostic performance as compared to other ANNs. It was able to achieve 97.50% accuracy, 100% specificity and 96.67% sensitivity. The false negative and false positive were 1.33% and 3.00%, respectively. CONCLUSIONS: This project has successfully developed an automatic diagnostic system for cervical pre-cancerous. This study has also successfully proposed one image processing technique namely the RGBFE algorithm for automatic feature extraction process and a new ANN architecture namely the H(2)MLP network for better diagnostic performance.


Assuntos
Diagnóstico por Computador/instrumentação , Citometria por Imagem/instrumentação , Neoplasias do Colo do Útero/diagnóstico , Algoritmos , Feminino , Humanos , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...