RESUMO
Brain glucose hypometabolism and neuroinflammation are early pathogenic manifestations in neurological disorders. Neuroinflammation may also disrupt leptin signaling, an adipokine that centrally regulates appetite and energy balance by acting on the hypothalamus and exerting neuroprotection in the hippocampus. The Goto-Kakizaki (GK) rat is a non-obese type 2 diabetes mellitus (T2DM) animal model used to investigate diabetes-associated molecular mechanisms without obesity jeopardizing effects. Wistar and GK rats received the maintenance adult rodent diet. Also, an additional control group of Wistar rats received a high-fat and high-sugar diet (HFHS) provided by free consumption of condensed milk. All diets and water were provided ad libitum for eight weeks. Brain glucose uptake was evaluated by 2-deoxy-2-[fluorine-18] fluoro-D-glucose under basal (saline administration) or stimulated (CL316,243, a selective ß3-AR agonist) conditions. The animals were fasted for 10-12 h, anesthetized, and euthanized. The brain was quickly dissected, and the hippocampal area was sectioned and stored at -80°C in different tubes for protein and RNA analyses on the same animal. GK rats exhibited attenuated brain glucose uptake compared to Wistar animals and the HFHS group under basal conditions. Also, the hippocampus of GK rats displayed upregulated leptin receptor, IL-1ß, and IL-6 gene expression and IL-1ß and the subunit of the transcription factor NF-κB (p-p65) protein expression. No significant alterations were detected in the hippocampus of HFHS rats. Our data indicated that a genetic predisposition to T2DM has significant brain deteriorating features, including brain glucose hypometabolism, neuroinflammation, and leptin signaling disruption in the hippocampal area.
Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Ratos , Animais , Glucose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ratos Wistar , Leptina , Glicemia/metabolismo , Doenças Neuroinflamatórias , Encéfalo/metabolismo , Obesidade , Hipocampo/metabolismo , Inflamação , InsulinaRESUMO
Brain glucose hypometabolism and neuroinflammation are early pathogenic manifestations in neurological disorders. Neuroinflammation may also disrupt leptin signaling, an adipokine that centrally regulates appetite and energy balance by acting on the hypothalamus and exerting neuroprotection in the hippocampus. The Goto-Kakizaki (GK) rat is a non-obese type 2 diabetes mellitus (T2DM) animal model used to investigate diabetes-associated molecular mechanisms without obesity jeopardizing effects. Wistar and GK rats received the maintenance adult rodent diet. Also, an additional control group of Wistar rats received a high-fat and high-sugar diet (HFHS) provided by free consumption of condensed milk. All diets and water were provided ad libitum for eight weeks. Brain glucose uptake was evaluated by 2-deoxy-2-[fluorine-18] fluoro-D-glucose under basal (saline administration) or stimulated (CL316,243, a selective β3-AR agonist) conditions. The animals were fasted for 10-12 h, anesthetized, and euthanized. The brain was quickly dissected, and the hippocampal area was sectioned and stored at -80°C in different tubes for protein and RNA analyses on the same animal. GK rats exhibited attenuated brain glucose uptake compared to Wistar animals and the HFHS group under basal conditions. Also, the hippocampus of GK rats displayed upregulated leptin receptor, IL-1β, and IL-6 gene expression and IL-1β and the subunit of the transcription factor NF-κB (p-p65) protein expression. No significant alterations were detected in the hippocampus of HFHS rats. Our data indicated that a genetic predisposition to T2DM has significant brain deteriorating features, including brain glucose hypometabolism, neuroinflammation, and leptin signaling disruption in the hippocampal area.
RESUMO
Diabetes is associated with a worse prognosis and a high risk of morbidity and mortality in COVID-19 patients. We aimed to evaluate the main factors involved in the poor prognosis in diabetic patients. A total of 984 patients diagnosed with COVID-19 admitted to the hospital were included in this study. Patients were first divided into type-2 diabetic (DM+) and non-diabetic (DM-) groups. The participants were analyzed based on the National Early Warning Score (NEWS) and on the Quick-Sequential Organ Failure Assessment (qSOFA) to find the best prognostic risk score for our study. The DM+ and DM- groups were divided into non-severe and severe groups. Comparative and correlative analyses were used to identify the physiological parameters that could be employed for creating a potential risk indicator for DM+ COVID-19 patients. We found a poorer prognosis for the DM+ COVID-19 patients with a higher ICU admission rate, mechanical ventilation rate, vasopressor use, dialysis, and longer treatment times compared with the DM- group. DM+ COVID-19 patients had increased plasma glucose, lactate, age, urea, NEWS, and D-dimer levels, herein referred to as the GLAUND set, and worse prognosis and outcomes when compared with infected DM- patients. The NEWS score was a better indicator for assessing COVID-19 severity in diabetic patients than the q-SOFA score. In conclusion, diabetic COVID-19 patients should be assessed with the NEWS score and GLAUND set for determining their prognosis COVID-19 prognosis.
Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Sepse , COVID-19/complicações , Diabetes Mellitus Tipo 2/complicações , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva , Escores de Disfunção Orgânica , Curva ROC , Estudos Retrospectivos , Sepse/diagnósticoRESUMO
There is a high incidence of non-obese type 2 diabetes mellitus (non-obese-T2DM) cases, particularly in Asian countries, for which the pathogenesis remains mainly unclear. Interestingly, Goto-Kakizaki (GK) rats spontaneously develop insulin resistance (IR) and non-obese-T2DM, making them a lean diabetes model. Physical exercise is a non-pharmacological therapeutic approach to reduce adipose tissue mass, improving peripheral IR, glycemic control, and quality of life in obese animals or humans with T2DM. In this narrative review, we selected and analyzed the published literature on the effects of physical exercise on the metabolic features associated with non-obese-T2DM. Only randomized controlled trials with regular physical exercise training, freely executed physical activity, or skeletal muscle stimulation protocols in GK rats published after 2008 were included. The results indicated that exercise reduces plasma insulin levels, increases skeletal muscle glycogen content, improves exercise tolerance, protects renal and myocardial function, and enhances blood oxygen flow in GK rats.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Qualidade de Vida , RatosRESUMO
Diabetes is associated with a worse prognosis and a high risk of morbidity and mortality in COVID-19 patients. We aimed to evaluate the main factors involved in the poor prognosis in diabetic patients. A total of 984 patients diagnosed with COVID-19 admitted to the hospital were included in this study. Patients were first divided into type-2 diabetic (DM+) and non-diabetic (DM–) groups. The participants were analyzed based on the National Early Warning Score (NEWS) and on the Quick-Sequential Organ Failure Assessment (qSOFA) to find the best prognostic risk score for our study. The DM+ and DM– groups were divided into non-severe and severe groups. Comparative and correlative analyses were used to identify the physiological parameters that could be employed for creating a potential risk indicator for DM+ COVID-19 patients. We found a poorer prognosis for the DM+ COVID-19 patients with a higher ICU admission rate, mechanical ventilation rate, vasopressor use, dialysis, and longer treatment times compared with the DM– group. DM+ COVID-19 patients had increased plasma glucose, lactate, age, urea, NEWS, and D-dimer levels, herein referred to as the GLAUND set, and worse prognosis and outcomes when compared with infected DM– patients. The NEWS score was a better indicator for assessing COVID-19 severity in diabetic patients than the q-SOFA score. In conclusion, diabetic COVID-19 patients should be assessed with the NEWS score and GLAUND set for determining their prognosis COVID-19 prognosis.
RESUMO
There is a high incidence of non-obese type 2 diabetes mellitus (non-obese-T2DM) cases, particularly in Asian countries, for which the pathogenesis remains mainly unclear. Interestingly, Goto-Kakizaki (GK) rats spontaneously develop insulin resistance (IR) and non-obese-T2DM, making them a lean diabetes model. Physical exercise is a non-pharmacological therapeutic approach to reduce adipose tissue mass, improving peripheral IR, glycemic control, and quality of life in obese animals or humans with T2DM. In this narrative review, we selected and analyzed the published literature on the effects of physical exercise on the metabolic features associated with non-obese-T2DM. Only randomized controlled trials with regular physical exercise training, freely executed physical activity, or skeletal muscle stimulation protocols in GK rats published after 2008 were included. The results indicated that exercise reduces plasma insulin levels, increases skeletal muscle glycogen content, improves exercise tolerance, protects renal and myocardial function, and enhances blood oxygen flow in GK rats
RESUMO
There is a high incidence of non-obese type 2 diabetes mellitus (non-obese-T2DM) cases, particularly in Asian countries, for which the pathogenesis remains mainly unclear. Interestingly, Goto-Kakizaki (GK) rats spontaneously develop insulin resistance (IR) and non-obese-T2DM, making them a lean diabetes model. Physical exercise is a non-pharmacological therapeutic approach to reduce adipose tissue mass, improving peripheral IR, glycemic control, and quality of life in obese animals or humans with T2DM. In this narrative review, we selected and analyzed the published literature on the effects of physical exercise on the metabolic features associated with non-obese-T2DM. Only randomized controlled trials with regular physical exercise training, freely executed physical activity, or skeletal muscle stimulation protocols in GK rats published after 2008 were included. The results indicated that exercise reduces plasma insulin levels, increases skeletal muscle glycogen content, improves exercise tolerance, protects renal and myocardial function, and enhances blood oxygen flow in GK rats.
RESUMO
Diabetes is associated with a worse prognosis and a high risk of morbidity and mortality in COVID-19 patients. We aimed to evaluate the main factors involved in the poor prognosis in diabetic patients. A total of 984 patients diagnosed with COVID-19 admitted to the hospital were included in this study. Patients were first divided into type-2 diabetic (DM+) and non-diabetic (DM-) groups. The participants were analyzed based on the National Early Warning Score (NEWS) and on the Quick-Sequential Organ Failure Assessment (qSOFA) to find the best prognostic risk score for our study. The DM+ and DM- groups were divided into non-severe and severe groups. Comparative and correlative analyses were used to identify the physiological parameters that could be employed for creating a potential risk indicator for DM+ COVID-19 patients. We found a poorer prognosis for the DM+ COVID-19 patients with a higher ICU admission rate, mechanical ventilation rate, vasopressor use, dialysis, and longer treatment times compared with the DM- group. DM+ COVID-19 patients had increased plasma glucose, lactate, age, urea, NEWS, and D-dimer levels, herein referred to as the GLAUND set, and worse prognosis and outcomes when compared with infected DM- patients. The NEWS score was a better indicator for assessing COVID-19 severity in diabetic patients than the q-SOFA score. In conclusion, diabetic COVID-19 patients should be assessed with the NEWS score and GLAUND set for determining their prognosis COVID-19 prognosis.
RESUMO
We previously reported that both the high-carbohydrate diet (HCD) and high-fat diet (HFD) given for two months promote lipid deposition and inflammation in the liver and brain of mice. The results obtained indicate a tissue-specific response to both diets. Herein, we compared the effects of HCD and HFD on fatty acid (FA) composition and inflammation in the gastrocnemius muscle. Male Swiss mice were fed with HCD or HFD for 1 or 2 months. Saturated FA (SFA), monounsaturated FA (MUFA), n-3 polyunsaturated FA (n-3 PUFA), and n-6 PUFA were quantified. The activities of stearoyl-CoA desaturase 1 (SCD-1), Δ-6 desaturase (D6D), elongase 6, and de novo lipogenesis (DNL) were estimated. As for indicators of the inflammatory tissue state, we measured myeloperoxidase (MPO) activity and gene expression of F4/80, tumor necrosis factor-α (TNF-α), interleukin (IL)-4, IL-6, and IL-10. The HCD led to a lower deposition of SFA, MUFA, n-3 PUFA, and n-6 PUFA compared to HFD. However, the HCD increased arachidonic acid levels, SFA/n-3 PUFA ratio, DNL, SCD-1, D6D, and MPO activities, and expression of IL-6, contrasting with the general idea that increased lipid deposition is associated with more intense inflammation. The HCD was more potent to induce skeletal muscle inflammation than the HFD, regardless of the lower lipid accumulation.
Assuntos
Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Inflamação/metabolismo , Músculo Esquelético/metabolismo , Animais , Peso Corporal , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/metabolismo , Ingestão de Energia , Expressão Gênica , Masculino , CamundongosRESUMO
We previously reported that both the high-carbohydrate diet (HCD) and high-fat diet (HFD) given for two months promote lipid deposition and inflammation in the liver and brain of mice. The results obtained indicate a tissue-specific response to both diets. Herein, we compared the effects of HCD and HFD on fatty acid (FA) composition and inflammation in the gastrocnemius muscle. Male Swiss mice were fed with HCD or HFD for 1 or 2 months. Saturated FA (SFA), monounsaturated FA (MUFA), n-3 polyunsaturated FA (n-3 PUFA), and n-6 PUFA were quantified. The activities of stearoyl-CoA desaturase 1 (SCD-1), Δ-6 desaturase (D6D), elongase 6, and de novo lipogenesis (DNL) were estimated. As for indicators of the inflammatory tissue state, we measured myeloperoxidase (MPO) activity and gene expression of F4/80, tumor necrosis factor-α (TNF-α), interleukin (IL)-4, IL-6, and IL-10. The HCD led to a lower deposition of SFA, MUFA, n-3 PUFA, and n-6 PUFA compared to HFD. However, the HCD increased arachidonic acid levels, SFA/n-3 PUFA ratio, DNL, SCD-1, D6D, and MPO activities, and expression of IL-6, contrasting with the general idea that increased lipid deposition is associated with more intense inflammation. The HCD was more potent to induce skeletal muscle inflammation than the HFD, regardless of the lower lipid accumulation.
Assuntos
Animais , Masculino , Coelhos , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Músculo Esquelético/metabolismo , Inflamação/metabolismo , Peso Corporal , Ingestão de Energia , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/metabolismo , Expressão GênicaRESUMO
High caloric intake promotes chronic inflammation, insulin resistance, and chronic diseases such as type-2 diabetes, which may be prevented by food restriction (FR). The effect of FR on expression of pro-inflammatory and anti-inflammatory genes in adipose tissue, liver, muscle, and brain was compared. Male Swiss mice were submitted to FR (FR group) or had free access to food (control group) during 56 days. The liver, gastrocnemius muscle, brain, and epididymal white adipose tissue (WAT) were collected for analysis of gene expressions. FR attenuated inflammation in the liver, brain, and gastrocnemius muscle but did not markedly change inflammatory gene expression in epididymal WAT. We concluded that adipose tissue was less responsive to FR in terms of gene expression of pro-inflammatory and anti-inflammatory genes.
Assuntos
Animais , Masculino , Coelhos , Encéfalo/metabolismo , Tecido Adiposo/metabolismo , Músculo Esquelético/metabolismo , Dieta Hiperlipídica , Fígado/metabolismo , Triglicerídeos/sangue , Glicemia/análise , Expressão Gênica , Colesterol/sangueRESUMO
High caloric intake promotes chronic inflammation, insulin resistance, and chronic diseases such as type-2 diabetes, which may be prevented by food restriction (FR). The effect of FR on expression of pro-inflammatory and anti-inflammatory genes in adipose tissue, liver, muscle, and brain was compared. Male Swiss mice were submitted to FR (FR group) or had free access to food (control group) during 56 days. The liver, gastrocnemius muscle, brain, and epididymal white adipose tissue (WAT) were collected for analysis of gene expressions. FR attenuated inflammation in the liver, brain, and gastrocnemius muscle but did not markedly change inflammatory gene expression in epididymal WAT. We concluded that adipose tissue was less responsive to FR in terms of gene expression of pro-inflammatory and anti-inflammatory genes.