Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(10): 17257-17262, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36153944

RESUMO

Superconducting thin films of niobium have been extensively employed in transmon qubit architectures. Although these architectures have demonstrated improvements in recent years, further improvements in performance through materials engineering will aid in large-scale deployment. Here, we use information retrieved from secondary ion mass spectrometry and electron microscopy to conduct a detailed assessment of the surface oxide that forms in ambient conditions for transmon test qubit devices patterned from a niobium film. We observe that this oxide exhibits a varying stoichiometry with NbO and NbO2 found closer to the niobium film/oxide interface and Nb2O5 found closer to the surface. In terms of structural analysis, we find that the Nb2O5 region is semicrystalline in nature and exhibits randomly oriented grains on the order of 1-3 nm corresponding to monoclinic N-Nb2O5 that are dispersed throughout an amorphous matrix. Using fluctuation electron microscopy, we are able to map the relative crystallinity in the Nb2O5 region with nanometer spatial resolution. Through this correlative method, we observe that the highly disordered regions are more likely to contain oxygen vacancies and exhibit weaker bonds between the niobium and oxygen atoms. Based on these findings, we expect that oxygen vacancies likely serve as a decoherence mechanism in quantum systems.

2.
Ultramicroscopy ; 231: 113249, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33902953

RESUMO

Transmission electron microscopy (TEM) has led to important discoveries in atomic imaging and as an atom-by-atom fabrication tool. Using electron beams, atomic structures can be patterned, annealed and crystallized, and nanopores can be drilled in thin membranes. We review current progress in TEM analysis and implement a computer vision nanopore-detection algorithm that achieves a 96% pixelwise precision in TEM images of nanopores in 2D membranes (WS2), and discuss parameter optimization including a variation on the traditional grid search and gradient ascent. Such nanopores have applications in ion detection, water filtration, and DNA sequencing, where ionic conductance through the pore should be concordant with its TEM-measured size. Standard computer vision methods have their advantages as they are intuitive and do not require extensive training data. For completeness, we briefly comment on related machine learning for 2D materials analysis and discuss relevant progress in these fields. Image analysis alongside TEM allows correlated fabrication and analysis done simultaneously in situ to engineer devices at the atomic scale.


Assuntos
Nanoporos , Computadores , Eletrodos , Íons , Microscopia Eletrônica de Transmissão e Varredura
3.
Adv Electron Mater ; 7(6)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36111247

RESUMO

The large-scale growth of semiconducting thin films on insulating substrates enables batch fabrication of atomically thin electronic and optoelectronic devices and circuits without film transfer. Here an efficient method to achieve rapid growth of large-area monolayer MoSe2 films based on spin coating of Mo precursor and assisted by NaCl is reported. Uniform monolayer MoSe2 films up to a few inches in size are obtained within a short growth time of 5 min. The as-grown monolayer MoSe2 films are of high quality with large grain size (up to 120 µm). Arrays of field-effect transistors are fabricated from the MoSe2 films through a photolithographic process; the devices exhibit high carrier mobility of ≈27.6 cm2 V-1 s-1 and on/off ratios of ≈105. The findings provide insight into the batch production of uniform thin transition metal dichalcogenide films and promote their large-scale applications.

4.
Sci Adv ; 6(51)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33355128

RESUMO

Gas flows are often analyzed with the theoretical descriptions formulated over a century ago and constantly challenged by the emerging architectures of narrow channels, slits, and apertures. Here, we report atomic-scale defects in two-dimensional (2D) materials as apertures for gas flows at the ultimate quasi-0D atomic limit. We establish that pristine monolayer tungsten disulfide (WS2) membranes act as atomically thin barriers to gas transport. Atomic vacancies from missing tungsten (W) sites are made in freestanding (WS2) monolayers by focused ion beam irradiation and characterized using aberration-corrected transmission electron microscopy. WS2 monolayers with atomic apertures are mechanically sturdy and showed fast helium flow. We propose a simple yet robust method for confirming the formation of atomic apertures over large areas using gas flows, an essential step for pursuing their prospective applications in various domains including molecular separation, single quantum emitters, sensing and monitoring of gases at ultralow concentrations.

6.
ACS Nano ; 14(9): 11831-11845, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32790336

RESUMO

We report on single atomic zero-dimensional (0D) pores fabricated using aberration-corrected scanning transmission electron microscopy (AC-STEM) in monolayer MoS2. Pores are comprised of a few atoms missing in the two-dimensional (2D) lattice (1-5 Mo atoms) of characteristic sizes from ∼0.5 to 1.2 nm, and pore edges directly probed by AC-STEM to map the atomic structure. We categorize them into ∼30 geometrically possible zigzag, armchair, and mixed configurations. While theoretical studies predict that transport properties of 2D pores in this size range depend strongly on pore size and their atomic configuration, 0D pores show an average conductance in the range from ∼0.6-1 nS (bias up to 0.1 V), similar to biological pores. In some devices, the current was immeasurably small and/or pores could not be wet. Furthermore, current-voltage (I-V) characteristics are largely independent of bulk molarity (10 mM to 3 M KCl) and the type of cation (K+, Li+, Mg2+). This work lays the experimental foundation for understanding of the confinement effects possible in atomic-scale 2D material pores and the realization of solid-state analogues of ion channels in biology.

7.
ACS Nano ; 14(6): 7389-7397, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32379420

RESUMO

We use the beam of a transmission electron microscope (TEM) to modulate in situ the current-voltage characteristics of a two-terminal monolayer molybdenum disulfide (MoS2) channel fabricated on a silicon nitride substrate. Suppression of the two-dimensional (2D) MoS2 channel conductance up to 94% is observed when the beam hits and charges the substrate surface. Gate-tunable transistor characteristics dependent on beam current are observed even when the beam is up to tens of microns away from the channel. In contrast, conductance remains constant when the beam passes through a micron-sized hole in the substrate. There is no MoS2 structural damage during gating, and the conductance reverts to its original value when the beam is turned off. We observe on/off ratios up to ∼60 that are largely independent of beam size and channel length. This TEM field-effect transistor architecture with electron beam gating provides a platform for future in situ electrical measurements.

8.
ACS Nano ; 14(6): 6715-6728, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32275381

RESUMO

Nanopores are promising for many applications including DNA sequencing and molecular filtration. Solid-state nanopores are preferable over their biological counterparts for applications requiring durability and operation under a wider range of external parameters, yet few studies have focused on optimizing their robustness. We report the lifetime and durability of pores and porous arrays in 10 to 100 nm-thick, low-stress silicon nitride (SiNx) membranes. Pores are fabricated using a transmission electron microscope (TEM) and/or electron beam lithography (EBL) and reactive ion etching (RIE), with diameters from 2 to 80 nm. We store them in various electrolyte solutions (KCl, LiCl, MgCl2) and record open pore conductance over months to quantify pore stability. Pore diameters increase with time, and diameter etch rate increases with electrolyte concentration from Δd/Δt ∼ 0.2 to ∼ 3 nm/day for 0.01 to 3 M KCl, respectively. TEM confirms the range of diameter etch rates from ionic measurements. Using electron energy loss spectroscopy (EELS), we observe a N-deficient region around the edges of TEM-drilled pores. Pore expansion is caused by etching of the Si/SiO2 pore walls, which resembles the dissolution of silicon found in minerals such as silica (SiO2) in salty ocean water. The etching process occurs where the membrane was exposed to the electron beam and can result in pore formation. However, coating pores with a conformal 1 nm-thick hafnium oxide layer prevents expansion in 1 M KCl, in stark contrast to bare SiNx pores (∼ 1.7 nm/day). EELS data reveal the atomic composition of bare and HfO2-coated pores.


Assuntos
Nanoporos , Íons , Compostos de Silício , Dióxido de Silício
9.
ACS Nano ; 14(4): 3736-3746, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32195580

RESUMO

We provide an overview of atom-scale apertures in solid-state membranes, from "pores" and "tubes" to "channels", with characteristic sizes comparable to the sizes of ions and water molecules. In this regime of ∼1 nm diameter pores, water molecules and ions are strongly geometrically confined: the size of water molecules (∼0.3 nm) and the size of "hydrated" ions in water (∼0.7-1 nm) are similar to the pore diameters, physically limiting the ion flow through the hole. The pore sizes are comparable to the classical Debye screening length governing the spatial range of electrostatic interaction, ∼0.3 to 1 nm for 1 to 0.1 M KCl. In such small structures, charges can be unscreened, leading to new effects. We discuss experiments on ∼1 nm diameter nanopores, with a focus on carbon nanotube pores and ion transport studies. Finally, we present an outlook for artificial "size zero" pores in the regime of small diameters and small thicknesses. Beyond mimicking protein channels in nature, solid-state pores may offer additional possibilities where sensing and control are performed at the pore, such as in electrically and optically addressable solid-state materials.

10.
Nanotechnology ; 31(10): 105302, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747649

RESUMO

Two-dimensional (2D) van der Waals superlattices comprised of two stacked monolayer materials have attracted significant interest as platforms for novel optoelectronic and structural behavior. Although studies are focused on superlattice fabrication, less effort has been given to the nanoscale patterning and structural modification of these systems. In this report, we demonstrate the localized layer-by-layer thinning and formation of nanopores/defects in 2D superlattices, such as stacked MoS2-WS2 van der Waals heterostructures and chemical vapor deposited bilayer WSe2, using aberration-corrected scanning transmission electron microscopy (STEM). Controlled electron beam irradiation is used to locally thin superlattices by removing the bottom layer of atoms, followed by defect formation through ablation of the second layer of atoms. The resulting defects exhibit atomically-sharp pore edges with tunable diameters down to 0.6 nm. Structural periodicities and focused STEM irradiation are also utilized to form close-packed nanopore arrays in superlattices with varying twist angles and commensurability. Applying these methods and mechanisms provides a forward approach in the atomic-scale patterning of stacked 2D nanodevices.

11.
ACS Nano ; 13(9): 10490-10498, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31424199

RESUMO

Bilayer two-dimensional (2D) van der Waals (vdW) materials are attracting increasing attention due to their predicted high quality electronic and optical properties. Here, we demonstrate dense, selective growth of WSe2 bilayer flakes by chemical vapor deposition with the use of a 1:10 molar mixture of sodium cholate and sodium chloride as the growth promoter to control the local diffusion of W-containing species. A large fraction of the bilayer WSe2 flakes showed a 0 (AB) and 60° (AA') twist between the two layers, whereas Moiré 15 and 30° twist angles were also observed. Well-defined monolayer-bilayer junctions were formed in the as-grown bilayer WSe2 flakes, and these interfaces exhibited p-n diode rectification and an ambipolar transport characteristic. This work provides an efficient method for the layer-controlled growth of 2D materials, in particular, 2D transition metal dichalcogenides, and promotes their applications in next-generation electronic and optoelectronic devices.

12.
Nano Lett ; 19(1): 392-399, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30532980

RESUMO

Two-dimensional nanoporous membranes have received attention as catalysts for energy generation and membranes for liquid and gas purification but controlling their porosity and facilitating large-scale production is challenging. We show the growth and fabrication of centimeter-scale molybdenum disulfide (MoS2) membranes with tunable porous areas up to ∼ 10% of the membrane and average nanopore diameters as large as ∼ 30 nm, controlled by the etch time. We also measure ionic conductance between 0.1 and 16 µS per µm2 through variably etched nanoporous membranes. Ensuring the mechanical robustness and large-area of the membrane, bilayer and few-layer regions form a strong supporting matrix around monolayer regions, observed by aberration-corrected scanning transmission electron microscopy. During etching, nanopores form in thin, primarily monolayer areas whereas thicker multilayer regions remain essentially intact. Atomic-resolution imaging reveals that after exposure to the etchant, the number of V1Mo vacancies increases and nanopores form along grain boundaries in monolayers, suggesting that etching starts at intrinsic defect sites. This work provides an avenue for the scalable production of nanoporous atomically thin membranes.

13.
ACS Nano ; 11(7): 7494-7507, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28666086

RESUMO

A tunable band gap in phosphorene extends its applicability in nanoelectronic and optoelectronic applications. Here, we propose to tune the band gap in phosphorene by patterning antidot lattices, which are periodic arrays of holes or nanopores etched in the material, and by exploiting quantum confinement in the corresponding nanoconstrictions. We fabricated antidot lattices with radii down to 13 nm in few-layer black phosphorus flakes protected by an oxide layer and observed suppression of the in-plane phonon modes relative to the unmodified material via Raman spectroscopy. In contrast to graphene antidots, the Raman peak positions in few-layer BP antidots are unchanged, in agreement with predicted power spectra. We also use DFT calculations to predict the electronic properties of phosphorene antidot lattices and observe a band gap scaling consistent with quantum confinement effects. Deviations are attributed primarily to self-passivating edge morphologies, where each phosphorus atom has the same number of bonds per atom as the pristine material so that no dopants can saturate dangling bonds. Quantum confinement is stronger for the zigzag edge nanoconstrictions between the holes as compared to those with armchair edges, resulting in a roughly bimodal band gap distribution. Interestingly, in two of the antidot structures an unreported self-passivating reconstruction of the zigzag edge endows the systems with a metallic component. The experimental demonstration of antidots and the theoretical results provide motivation to further scale down nanofabrication of antidots in the few-nanometer size regime, where quantum confinement is particularly important.


Assuntos
Nanoporos/ultraestrutura , Nanoestruturas/química , Fósforo/química , Semicondutores , Anisotropia , Elétrons , Desenho de Equipamento , Modelos Moleculares , Nanoestruturas/ultraestrutura , Teoria Quântica
14.
Sci Rep ; 7: 43037, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28220852

RESUMO

A facile transfer process for transition metal dichalcogenide WS2 flakes is reported and the effect of the underlying substrate on the flake properties is investigated using Raman spectroscopy. The flakes are transferred from their growth substrate using polymethyl methacrylate (PMMA) and a wet etch to allow the user to transfer the flakes to a final substrate using a microscope and micromanipulator combined with semi-transparent Kapton tape. The substrates used range from insulators such as industry standard high-k dielectric HfO2 and "green polymer" parylene-C, to conducting chemical vapor deposition (CVD) grown graphene. Raman spectroscopy is used first to confirm the material quality of the transferred flakes to the substrates and subsequently to analyze and separate the effects arising from material transfer from those arising from interactions with the substrate. We observe changes in the Raman spectra associated with the interactions between the substrates in the flakes. These interactions affect both in-plane and out-of-plane modes in different ways depending on their sources, for example strain or surface charge. These changes vary with final substrate, with the strongest effects being observed for WS2 transferred onto graphene and HfO2, demonstrating the importance of understanding substrate interaction for fabrication of future devices.

15.
ACS Nano ; 11(2): 1937-1945, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28125779

RESUMO

Two-dimensional materials are promising for a range of applications, as well as testbeds for probing the physics of low-dimensional systems. Tungsten disulfide (WS2) monolayers exhibit a direct band gap and strong photoluminescence (PL) in the visible range, opening possibilities for advanced optoelectronic applications. Here, we report the realization of two-dimensional nanometer-size pores in suspended monolayer WS2 membranes, allowing for electrical and optical response in ionic current measurements. A focused electron beam was used to fabricate nanopores in WS2 membranes suspended on silicon-based chips and characterized using PL spectroscopy and aberration-corrected high-resolution scanning transmission electron microscopy. It was observed that the PL intensity of suspended WS2 monolayers is ∼10-15 times stronger when compared to that of substrate-supported monolayers, and low-dose scanning transmission electron microscope viewing and drilling preserves the PL signal of WS2 around the pore. We establish that such nanopores allow ionic conductance and DNA translocations. We also demonstrate that under low-power laser illumination in solution, WS2 nanopores grow slowly in size at an effective rate of ∼0.2-0.4 nm/s, thus allowing for atomically controlled nanopore size using short light pulses.


Assuntos
DNA/química , Dissulfetos/química , Luz , Nanoporos , Tungstênio/química , Luminescência , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Processos Fotoquímicos
17.
ACS Nano ; 10(6): 5687-95, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27192448

RESUMO

Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with great promise for fast functional electronics and optoelectronics. We demonstrate the controlled structural modification of few-layer BP along arbitrary crystal directions with sub-nanometer precision for the formation of few-nanometer-wide armchair and zigzag BP nanoribbons. Nanoribbons are fabricated, along with nanopores and nanogaps, using a combination of mechanical-liquid exfoliation and in situ transmission electron microscopy (TEM) and scanning TEM nanosculpting. We predict that the few-nanometer-wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. The demonstration of this procedure is key for the development of BP-based electronics, optoelectronics, thermoelectrics, and other applications in reduced dimensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...