Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Eng Phys ; 83: 112-122, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32507416

RESUMO

Magnetic Resonance Imaging (MRI) can be applied to study the effects of rehabilitation strategies for neuroscience research. An MRI-wrist robot is designed and used as a clinical tool to examine the process of the brain plasticity changes. In this robot, the patient actuation is accomplished with two standard air cylinders, located inside the MRI chamber with two degrees of freedom (flexion-extension and ulna-radial deviation) with pneumatic air transmission, consisting of simple mechanism converting rotary motion to linear independently. A pilot study of brain image aiming at revealing more effective therapeutic strategies carried out to confirm the technical aspects of the development and validation. In a healthy subject, both wrist movement of robot and subject demonstrated brain activity in the contralateral primary somatosensory cortex. Because the robot does not move during the patient's body, a stand was designed to allow the wrist robot and patient to fit comfortably within the MRI machine. While all the parts of the robot were carefully selected with strict MRI compatibility requirements, the robot was tested by presenting some pilot imaging data with null effects on the image quality, as well. Finally, the possible further development of the robot has been introduced for a rehabilitation assessment.


Assuntos
Procedimentos Cirúrgicos Robóticos , Reabilitação do Acidente Vascular Cerebral , Encéfalo/diagnóstico por imagem , Terapia por Exercício , Humanos , Imageamento por Ressonância Magnética , Projetos Piloto , Punho/diagnóstico por imagem
2.
J Biomed Phys Eng ; 8(4): 409-422, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30568931

RESUMO

Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets. Objective: We classified patients with relapsing-remitting multiple sclerosis (RRMS) from healthy subjects using QMTI and T1 longitudinal relaxation time data of brain white matter, then the performance of three ANN-based classifiers have been investigated. Materials and Methods: The input features of ANN algorithms, including multilayer perceptron (MLP), radial basis function (RBF) and ensemble neural networks based on Akaike information criterion (ENN-AIC) were extracted in the form of QMTI and T1 mean values from parametric maps. The ANNs quantitative performance is measured by the standard evaluation of confusion matrix criteria. Results: The results indicate that ENN-AIC-based classification method has achieved 90% accuracy, 92% sensitivity and 86% precision compared to other ANN models. NPV, FPR and FDR values were found to be 0.933, 0.125 and 0.133, respectively, according to the proposed ENN-AIC model. A graphical representation of how to track actual data by the predictive values derived from ANN algorithms, was also presented. Conclusion: It has been demonstrated that ENN-AIC as an effective neural network improves the quality of classification results compared to MLP and RBF.In addition, this research provides a new direction to classify a large amount of quantitative MRI data that can help the physician in a correct MS diagnosis.

3.
J Biomed Phys Eng ; 8(3): 251-260, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30320029

RESUMO

BACKGROUND: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling. OBJECTIVE: We studied whether extracted parameters of DTI, and NODDI models can be used to differentiate between edematous, tumoral, and normal areas in brain white matter (WM). MATERIAL AND METHODS: 12 patients with peritumoral edema underwent 3T multi-shell diffusion imaging with b-values of 1000 and 2000 smm-2 in 30 and 64 gradient directions, respectively. We fitted DTI and NODDI to data in manually drawn regions of interest and used their derived parameters to characterize edematous, tumoral and normal brain areas. RESULTS: We found that DTI parameters fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) all significantly differentiated edematous from contralateral normal brain WM (p<0.005). However, only FA was found to distinguish between edematous WM fibers and tumor invaded fibers (p = 0.001). Among NODDI parameters, the intracellular volume fraction (ficvf) had the best distinguishing power with (p = 0.001) compared with the isotropic volume fraction (fiso), the orientation dispersion index (odi), and the concentration parameter of Watson distribution (κ), while comparing fibers inside normal, tumoral, and edematous areas. CONCLUSION: The combination of two diffusion based methods, i.e. DTI and NODDI parameters can distinguish and characterize WM fibers involved in edematus, tumoral, and normal brain areas with reasonable confidence. Further studies will be required to improve the detectability of WM fibers inside the solid tumor if they hypothetically exist in tumoral parenchyma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA