Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mult Scler Relat Disord ; 83: 105453, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277978

RESUMO

Multiple sclerosis (MS) is an autoimmune neurodegenerative disease in which the immune system attacks myelin basic protein of nerve axons. Recently, there has been growing interest in studying the role of a newly described population of immunity cells - innate lymphoid cells (ILCs) in the pathogenesis of the disease. At the same time, it was found that during pregnancy there is a weakening of Th1-mediated autoimmune pathologies manifestations, including MS. In this work, we studied phenotypic characteristics of ILC in MS patients in comparison with healthy donors after 48 h incubation with pregnancy hormone estriol (E3) and commensal microflora cells. To activate ILC, strains of Ecsherichia coli K12 and Lactobacillus plantarum 8R-A3 were used. ILC phenotype was assessed by flow cytometry using monoclonal antibody staining. It has been established that E3 and bacterial factors are able to regulate the maturation of ILC subtypes and their cytokines in different ways. In general, the studied factors influence the phenotypic changes in ILC cells, leading to the transition from one type to another, both in healthy donors and in MS patients.


Assuntos
Doenças Autoimunes , Esclerose Múltipla , Doenças Neurodegenerativas , Humanos , Esclerose Múltipla/complicações , Imunidade Inata , Linfócitos , Estriol
2.
Int J Mol Sci ; 24(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37833945

RESUMO

Biofilms as a form of adaptation are beneficial for bacterial survival and may be hot spots for horizontal gene transfer, including conjugation. The aim of this research was to characterize the biofilm biomass, viable cell ratios and conjugative transfer of the pOX38 plasmid, an F-plasmid derivative, from the Escherichia coli N4i pOX38 strain (donor) into a uropathogenic E. coli DL82 strain (recipient) within dual-species biofilms with one of the following opportunistic pathogenic bacteria: Klebsiella pneumoniae, Enterococcus faecalis or Pseudomonas aeruginosa. Dual-species biofilms of E. coli with K. pneumoniae or P. aeruginosa but not E. faecalis were more massive and possessed more exopolysaccharide matrix compared to single-species biofilms of donor and recipient cells. Correlation between biofilm biomass and exopolysaccharide matrix was rs = 0.888 in dual-species biofilms. In dual-species biofilm with E. faecalis the proportion of E. coli was the highest, while in the biofilm with P. aeruginosa and K. pneumoniae, the E. coli was less abundant. The conjugative frequencies of plasmid transfer in dual-species biofilms of E. coli with E. faecalis and P. aeruginosa were reduced. A decrease in conjugative frequency was also observed when cell-free supernatants (CFSs) of E. faecalis and P. aeruginosa were added to the E. coli conjugation mixture. Further, the activity of the autoinducer AI-2 in the CFSs of the E. coli conjugation mixture was reduced when bacteria or CFSs of E. faecalis and P. aeruginosa were added to the E. coli conjugation mixture. Hence, the intercellular and interspecies interactions in dual-species biofilms depend on the partners involved.


Assuntos
Biofilmes , Escherichia coli , Escherichia coli/genética , Biomassa , Plasmídeos/genética , Comunicação Celular
3.
Int J Mol Sci ; 23(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35328779

RESUMO

Mesenchymal stromal cells (MSC) 'educated' by tumor cells are an essential component of the multiple myeloma (MM) tumor microenvironment (TME) involved in tumor progression. Transcription of tandemly repeated (TR) non-coding DNA is often activated in many tumors and is required for tumor progression and cancer cells genome reorganization. The aim of the work was to study functional properties including the TR DNA transcription profile of MSC from the hematopoietic niche of treated MM patients. Healthy donors (HD) and patients after bortezomib-based treatment (with partial or complete response, PoCR, and non-responders, NR) were enrolled in the study. Their trephine biopsies were examined histologically to evaluate the hematopoietic niche. MSC cultures obtained from the biopsies were used for evaluation of the proliferation rate, osteogenic differentiation, presence of tumor MSC markers, resistance to bortezomib, and pericentromeric TR DNA transcription level. The MSC 'education' by multiple myeloma cells was mimicked in co-culture experiments with or without bortezomib. The TR DNA transcription profile was accessed. The histological examination revealed the persistence of the tumor microenvironment (especially of the vasculature) in treated patients. In co-culture experiments, MSC of bortezomib-treated patients were more resistant to bortezomib and protected cancer MM cells of the RPMI8226 cell line more effectively than HD-MSC did. The MSC obtained from PoCR and NR samples differed in their functional properties (proliferation capacity, osteogenic potential, and cancer-associated fibroblasts markers). Transcriptome analysis revealed activation of the TR transcription in cells of non-hematopoietic origin from NR patients' bone marrow. The pericentromeric TR DNA of HS2/HS3 families was among the most upregulated in stromal MSC but not in cancer cells. The highest level of transcription was observed in NR-MSC. Transcription of HS2/HS3 was not detected in healthy donors MSC unless they were co-cultured with MM cancer cells and acquired cancer-associated phenotype. Treatment with TNFα downregulated HS2/HS3 transcription in MSC and upregulated in MM cells. Our results suggest that the hematopoietic niche retains the cancer-associated phenotype after treatment. Pericentromeric non-coding DNA transcription is associated with the MSC cancer-associated phenotype in patients with ineffective or partially effective multiple myeloma treatment.


Assuntos
Células-Tronco Mesenquimais , Mieloma Múltiplo , Biomarcadores Tumorais/metabolismo , Bortezomib/farmacologia , Bortezomib/uso terapêutico , DNA/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Osteogênese , Microambiente Tumoral/genética
4.
Infect Genet Evol ; 97: 105160, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34839025

RESUMO

Conjugation is recognized as a mechanism driving dissemination of antibacterial resistances and virulence factors among bacteria. In the presented work conjugative transfer frequency into clinical uropathogenic Escherichia coli strains (UPEC) isolated from patients with symptomatic urinary tract infections was investigated. From 93 obtained UPEC strains only 29 were suitable for conjugation experiments with the plasmid pOX38, a well-known F-plasmid derivative. The study was focused on comparison of conjugation frequencies in plankton and biofilm, including comparison of conjugation frequencies in high and low biofilm biomass with their virulence potential. It was shown that the conjugation frequency depended on the biofilm biomass and was significantly higher in thin (OD580 < 0.3) than in thick biofilm (OD580 ≥ 0.3). Nonmetric multidimensional scaling analysis revealed that higher conjugation frequencies in plankton and biofilm were directly positively correlated with the sum of virulence-associated genes of the recipient strain and presence of multidrug antibiotic resistances. On the other hand, the sum of insensitivities to different bacteriocins was negatively correlated with an increase in the conjugative transfer level. Our results obtained hence indicate that the evolution of potentially more pathogenic strains via conjugation is depended on the strains' ability to be a "good" recipient in the conjugative transfer, possibly due to the ability to form thinner biofilms.


Assuntos
Biofilmes , Infecções por Escherichia coli/microbiologia , Plâncton , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/patogenicidade , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Plâncton/efeitos dos fármacos , Escherichia coli Uropatogênica/efeitos dos fármacos , Fatores de Virulência/genética
5.
Nanomaterials (Basel) ; 12(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35010076

RESUMO

Multiple graphene-based therapeutics have recently been developed, however potential risks related to the interaction between nanomaterials and immune cells are still poorly understood. Therefore, studying the impact of graphene oxide on various populations of immune cells is of importance. In this work, we aimed to investigate the effects of PEGylated graphene oxide on monocytes isolated from human peripheral blood. Graphene oxide nanoparticles with lateral sizes of 100-200 nm and 1-5 µm were modified with linear and branched PEG (GO-PEG). Size, elemental composition, and structure of the resulting nanoparticles were characterized. We confirmed that PEG was successfully attached to the graphene oxide surface. The influence of GO-PEG on the production of reactive oxygen species (ROS), cytokines, phagocytosis, and viability of monocytes was studied. Uptake of GO-PEG by monocytes depends on PEG structure (linear or branched). Branched PEG decreased the number of GO-PEG nanoparticles per monocyte. The viability of monocytes was not altered by co-cultivation with GO-PEG. GO-PEG decreased the phagocytosis of Escherichia coli in a concentration-dependent manner. ROS formation by monocytes was determined by measuring luminol-, lucigenin-, and dichlorodihydrofluorescein-dependent luminescence. GO-PEG decreased luminescent signal probably due to inactivation of ROS, such as hydroxyl and superoxide radicals. Some types of GO-PEG stimulated secretion of IL-10 by monocytes, but this effect did not correlate with their size or PEG structure.

6.
Pathog Dis ; 75(8)2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-28961860

RESUMO

Pseudomonas aeruginosa (PA) responsible for acute and chronic infections often forms a well-organized bacterial population with different microbial species including commensal strains of Escherichia coli. Bacterial extracellular components of mixed culture can modulate the influence of bacteria on the neutrophil functions. The objective of this study was to compare the effect of pyocyanin, pyoverdine, LPS, exopolysaccharide of single species and mixed culture supernatants of PA strains and E. coli K12 on microbicidal, secretory activity of human neutrophils in vitro. Bacterial components of E. coli K12 in mixed supernatants with 'biofilm' PA strains (PA ATCC, PA BALG) enhanced short-term microbicidal mechanisms and inhibited neutrophil secretion delayed in time. The influence of 'planktonic' PA (PA 9-3) exometabolites in mixed culture is almost mimicked by E. coli K12 effect on functional neutrophil changes. This investigation may help to understand some of the mechanisms of neutrophil response to mixed infections of different PA with other bacteria species.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Neutrófilos/fisiologia , Pseudomonas aeruginosa/fisiologia , Técnicas Bacteriológicas , Homosserina/análogos & derivados , Humanos , Lactonas , Lipopolissacarídeos , Medições Luminescentes , Oligopeptídeos , Peroxidase/metabolismo , Piocianina , Espécies Reativas de Oxigênio
7.
Plasmid ; 82: 28-34, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26436830

RESUMO

As multidrug resistant bacteria pose one of the greatest risks to human health new alternative antibacterial agents are urgently needed. One possible mechanism that can be used as an alternative to traditional antibiotic therapy is transfer of killing agents via conjugation. Our work was aimed at providing a proof of principle that conjugation-based antimicrobial systems are possible. We constructed a bacterial conjugation-based "kill"-"anti-kill" antimicrobial system employing the well known Escherichia coli probiotic strain Nissle 1917 genetically modified to harbor a conjugative plasmid carrying the "kill" gene (colicin ColE7 activity gene) and a chromosomally encoded "anti-kill" gene (ColE7 immunity gene). The constructed strain acts as a donor in conjugal transfer and its efficiency was tested in several types of conjugal assays. Our results clearly demonstrate that conjugation-based antimicrobial systems can be highly efficient.


Assuntos
Antibacterianos/metabolismo , Colicinas/genética , Conjugação Genética/genética , Escherichia coli/genética , Plasmídeos/genética , Infecções Bacterianas/terapia , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla , Humanos
8.
Can J Microbiol ; 59(9): 604-10, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24011343

RESUMO

Pseudomonas aeruginosa and Escherichia coli are known to be involved in mixed communities in diverse niches. In this study we examined the influence of the predominant form of cell existence of and the exometabolite production by P. aeruginosa strains on interspecies interactions, in vitro. Bacterial numbers of P. aeruginosa and E. coli in mixed plankton cultures and biofilms compared with their numbers in single plankton cultures and biofilms changed in a different way, but were in accordance with the form of P. aeruginosa cell existence. The mass of a mixed-species biofilm was greater than the mass of a single-species biofilm. Among the mixed biofilms, the one with the "planktonic" P. aeruginosa strain had the least biomass. The total pyocyanin and pyoverdin levels were found to be lower in all mixed plankton cultures. Despite this, clinical P. aeruginosa strains irrespective of the predominant form of existence ("biofilm" or "planktonic") had a higher total concentration of exometabolites than did the reference strain in 12-24 h mixed cultures. The metabolism of E. coli, according to its bioluminescence, was reduced in mixed cultures, and the decrease was by 20- to 100-fold greater with the clinical Pseudomonas strains than the reference Pseudomonas strain. Thus, both the predominant form of existence of and the exometabolite production by distinct P. aeruginosa strains should be considered to fully understand the interspecies relationship and bacteria survival in natural communities.


Assuntos
Biofilmes , Escherichia coli/fisiologia , Plâncton , Pseudomonas aeruginosa/fisiologia , Técnicas de Cocultura , Ecossistema , Escherichia coli/crescimento & desenvolvimento , Humanos , Interações Microbianas , Oligopeptídeos/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Piocianina/metabolismo
9.
Inorg Chem ; 52(10): 5722-8, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23631564

RESUMO

Glasses based on the oxofluoroniobate anion have been characterized by vibrational and solid-state NMR spectroscopy. The mechanism of glass formation in the systems K2NbOF5-MF3 (M = Al, In) has been suggested. A glass network is built from the chains of corner-sharing octahedra through -Nb-F(O)-M- and -Nb-F-Nb- bridges. Isolated NbOF5(2-) octahedra are also present, which is consistent with the glass composition. The high ionic mobility of NbOF5(2-) due to its fast reorientations results in equalization of the Nb-O and Nb-F distances, which is reflected in the appearance of the IR band at 700-800 cm(-1) not observed in the Raman spectrum. Its assignment to bridging -Nb-O-Nb- species accepted in the literature was not proven.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...