Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1358213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628369

RESUMO

When grapevine decline, characterized by a premature decrease in vigor and yield and sometimes plant death, cannot be explained by pathological or physiological diseases, one may inquire whether the microbiological status of the soil is responsible. Previous studies have shown that the composition and structure of bacterial and fungal microbial communities in inter-row soil are affected in areas displaying vine decline, compared to areas with non-declining vines within the same plot. A more comprehensive analysis was conducted in one such plot. Although soil chemical parameters could not directly explain these differences, the declining vines presented lower vigor, yield, berry quality, and petiole mineral content than those in non-declining vines. The bacterial and fungal microbiome of the root endosphere, rhizosphere, and different horizons of the bulk soil were explored through enzymatic, metabolic diversity, and metabarcoding analysis in both areas. Despite the lower microbial diversity and richness in symptomatic roots and soil, higher microbial activity and enrichment of potentially both beneficial bacteria and pathogenic fungi were found in the declining area. Path modeling analysis linked the root microbial activity to berry quality, suggesting a determinant role of root microbiome in the berry mineral content. Furthermore, certain fungal and bacterial taxa were correlated with predicted metabolic pathways and metabolic processes assessed with Eco-Plates. These results unexpectedly revealed active microbial profiles in the belowground compartments associated with stressed vines, highlighting the interest of exploring the functional microbiota of plants, and more specifically roots and rhizosphere, under stressed conditions.

2.
Food Microbiol ; 120: 104480, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431326

RESUMO

Biofilms are central to microbial life because of the advantage that this mode of life provides, whereas the planktonic form is considered to be transient in the environment. During the winemaking process, grape must and wines host a wide diversity of microorganisms able to grow in biofilm. This is the case of Brettanomyces bruxellensis considered the most harmful spoilage yeast, due to its negative sensory effect on wine and its ability to colonise stressful environments. In this study, the effect of different biotic and abiotic factors on the bioadhesion and biofilm formation capacities of B. bruxellensis was analyzed. Ethanol concentration and pH had negligible effect on yeast surface properties, pseudohyphal cell formation or bioadhesion, while the strain and genetic group factors strongly modulated the phenotypes studied. From a biotic point of view, the presence of two different strains of B. bruxellensis did not lead to a synergistic effect. A competition between the strains was rather observed during biofilm formation which seemed to be driven by the strain with the highest bioadhesion capacity. Finally, the presence of wine bacteria reduced the bioadhesion of B. bruxellensis. Due to biofilm formation, O. oeni cells were observed attached to B. bruxellensis as well as extracellular matrix on the surface of the cells.


Assuntos
Brettanomyces , Vinho , Saccharomyces cerevisiae , Microbiologia de Alimentos , Brettanomyces/metabolismo , Vinho/microbiologia
3.
Int J Food Microbiol ; 405: 110338, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37506548

RESUMO

Bioprotection by yeast addition is increasingly used in oenology as an alternative to sulfur dioxide (SO2). Recent studies have also shown that it is likely to consume dissolved O2. This ability could limit O2 for other microorganisms and the early oxidation of the grape must. However, the ability of yeasts to consume O2 in a context of bioprotection was poorly studied so far considering the high genetic diversity of non-Saccharomyces. The first aim of the present study was to perform an O2 consumption rate (OCR) screening of strains from a large multi species collection found in oenology. The results demonstrate significant inter and intra species diversity with regard to O2 consumption. In the must M. pulcherrima consumes O2 faster than Saccharomyces cerevisiae and then other studied non-Saccharomyces species. The O2 consumption was also evaluate in the context of a yeast mix used as industrial bioprotection (Metschnikowia pulcherrima and Torulaspora delbrueckii) in red must. These non-Saccharomyces yeasts were then showed to limit the growth of acetic acid bacteria, with a bioprotective effect comparable to that of the addition of sulfur dioxide. Laboratory experiment confirmed the negative impact of the non-Saccharomyces yeasts on Gluconobacter oxydans that may be related to O2 consumption. This study sheds new lights on the use of bioprotection as an alternative to SO2 and suggest the possibility to use O2 consumption measurements as a new criteria for non-Saccharomyces strain selection in a context of bioprotection application for the wine industry.


Assuntos
Vitis , Vinho , Saccharomyces cerevisiae , Ácido Acético/farmacologia , Dióxido de Enxofre/farmacologia , Vinho/microbiologia , Fermentação , Leveduras , Vitis/microbiologia , Bactérias
4.
Food Microbiol ; 112: 104209, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906297

RESUMO

In the context of climate change, the chemical composition of wines is characterized by a massive drop of malic acid concentration in grape berries. Then wine professionals have to find out physical and/or microbiological solutions to manage wine acidity. The aim of this study is to develop wine Saccharomyces cerevisiae strains able to produce significant amount of malic acid during the alcoholic fermentation. By applying a large phenotypic survey in small scale fermentations, the production level of malic acid in seven grape juices confirmed the importance of the grape juice in the production of malic acid during the alcoholic fermentation. Beside the grape juice effect, our results demonstrated that extreme individuals able to produce up to 3 g/L of malic acid can be selected by crossing together appropriate parental strains. A multivariate analysis of the dataset generated illustrate that the initial the amount of malic acid produced by yeast is a determining exogenous factor for controlling the final pH of wine. Interestingly most of the acidifying strains selected are particularly enriched in alleles that have been previously reported for increasing the level of malic acid at the end of the alcoholic fermentation. A small set of acidifying strains were compared with strains able to consume a large amount of malic acid previously selected. The total acidity of resulting wines was statistically different and a panelist of 28 judges was able to discriminate the two groups of strains during a free sorting task analysis.


Assuntos
Vitis , Vinho , Humanos , Vinho/microbiologia , Saccharomyces cerevisiae , Fermentação , Etanol/análise , Vitis/microbiologia
5.
Food Microbiol ; 112: 104217, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906300

RESUMO

Brettanomyces bruxellensis is the most damaging spoilage yeast in the wine industry because of its negative impact on the wine organoleptic qualities. The strain persistence in cellars over several years associated with recurrent wine contamination suggest specific properties to persist and survive in the environment through bioadhesion phenomena. In this work, the physico-chemical surface properties, morphology and ability to adhere to stainless steel were studied both on synthetic medium and on wine. More than 50 strains representative of the genetic diversity of the species were considered. Microscopy techniques made it possible to highlight a high morphological diversity of the cells with the presence of pseudohyphae forms for some genetic groups. Analysis of the physico-chemical properties of the cell surface reveals contrasting behaviors: most of the strains display a negative surface charge and hydrophilic behavior while the Beer 1 genetic group has a hydrophobic behavior. All strains showed bioadhesion abilities on stainless steel after only 3 h with differences in the concentration of bioadhered cells ranging from 2.2 × 102 cell/cm2 to 7.6 × 106 cell/cm2. Finally, our results show high variability of the bioadhesion properties, the first step in the biofilm formation, according to the genetic group with the most marked bioadhesion capacity for the beer group.


Assuntos
Brettanomyces , Vinho , Microbiologia de Alimentos , Aço Inoxidável/análise , Brettanomyces/metabolismo , Vinho/análise , Saccharomyces cerevisiae
6.
Mol Ecol ; 32(10): 2374-2395, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35318747

RESUMO

Human-associated microorganisms are ideal models to study the impact of environmental changes on species evolution and adaptation because of their small genome, short generation time, and their colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis is a good example of organism facing anthropogenic-driven selective pressures. It is associated with fermentation processes in which it can be considered either as a spoiler (e.g., winemaking, bioethanol production) or as a beneficial microorganism (e.g., production of specific beers, kombucha). In addition to its industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic studies have revealed the coexistence of auto- and allotriploidization events with different evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are associated with specific fermented processes, suggesting independent adaptation events to anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a wide variety of carbon and nitrogen sources, which may explain its ability to colonize already fermented environments showing low-nutrient contents. Several traits of interest could be related to adaptation to human activities (e.g., nitrate metabolization in bioethanol production, resistance to sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of the great genomic diversity of the species. Future work will have to take into account strains of varied substrates, geographical origins as well as displaying different ploidy levels to improve our understanding of an anthropized yeast's phenotypic landscape.


Assuntos
Brettanomyces , Vinho , Humanos , Saccharomyces cerevisiae , Vinho/análise , Brettanomyces/genética , Brettanomyces/metabolismo , Genômica , Fermentação
7.
Front Microbiol ; 13: 1031064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439844

RESUMO

Soil microbiota plays a significant role in plant development and health and appears to be a major component of certain forms of grapevine decline. A greenhouse experiment was conducted to study the impact of the microbiological quality of the soil and grapevine rootstock genotype on the root microbial community and development of young plants. Two rootstocks heterografted with the same scion were grown in two vineyard soils differing in microbial composition and activities. After 4 months, culture-dependent approaches and amplicon sequencing of bacterial 16S rRNA gene and fungal ITS were performed on roots, rhizosphere and bulk soil samples. The root mycorrhizal colonization and number of cultivable microorganisms in the rhizosphere compartment of both genotypes were clearly influenced by the soil status. The fungal diversity and richness were dependent on the soil status and the rootstock, whereas bacterial richness was affected by the genotype only. Fungal genera associated with grapevine diseases were more abundant in declining soil and related root samples. The rootstock affected the compartmentalization of microbial communities, underscoring its influence on microorganism selection. Fluorescence in situ hybridization (FISH) confirmed the presence of predominant root-associated bacteria. These results emphasized the importance of rootstock genotype and soil composition in shaping the microbiome of young vines.

8.
Int J Food Microbiol ; 381: 109907, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36063684

RESUMO

Chitosan is an active highly charged polysaccharide that has initially been developed in oenology to eliminate the spoilage yeast B. bruxellensis. However, different forms of chitosan exist, some complying with EU regulation for their use in wines, others not. Moreover, with the trend in oenology of limiting SO2, more and more questions arise as to the impact of chitosan on other microorganisms of the grape and wine environment. We investigated the antimicrobial efficiency of chitosan on a large oenological microbial collection, englobing technological as well as spoilage microorganisms. Results show that most species are affected at least transiently. Furthermore, a high variability prevails within most species and sensitive, intermediate and tolerant strains can be observed. This study also highlights different efficiencies depending on the wine parameters or the winemaking stage, giving important indications on which winemaking issues can be solved using chitosan. Chitosan treatment does not seem to be appropriate to limit the musts microbial pressure and Saccharomyces cerevisiae cannot be stopped during alcoholic fermentation, especially in sweet wines. Likewise, acetic acid bacteria are poorly impacted by chitosan. After alcoholic fermentation, chitosan can efficiently limit non-Saccharomyces yeast and lactic acid bacteria but special care should be given as to whether malolactic fermentation is wanted or not. Indeed, O. oeni can be severely impacted by chitosan, even months after treatment. Finally, this study highlights the crucial importance of the chitosan type used in its efficiency towards microbial stabilization. While a high molecular weight chitosan has limited antimicrobial properties, a chitosan with a much lower one, complying with EU and OIV regulation and specifications for its use in wine is much more efficient.


Assuntos
Anti-Infecciosos , Quitosana , Vitis , Vinho , Anti-Infecciosos/farmacologia , Quitosana/farmacologia , Fermentação , Saccharomyces cerevisiae , Vitis/microbiologia , Vinho/microbiologia
9.
J Agric Food Chem ; 70(37): 11520-11530, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36066388

RESUMO

The goal of this study was to evaluate how grape composition modifications linked to maturity level could affect the wine ester composition and aromatic expression. An experimental design has been developed from grapes of Vitis vinifera cv Merlot and cv Tempranillo. On each vine plot, grapes have been harvested at two maturity levels and have been fermented using a commercial yeast strain under standardized conditions, specifically after having the sugar and nitrogen concentrations adjusted to the same target values. Tempranillo wine ester content was not impacted by the maturity level, whereas Merlot wines from the highest maturity level showed lower concentrations for fatty acid ethyl esters and higher alcohol acetates but higher concentrations for substituted ethyl esters. Sensory analysis corroborated these analytical results: when Merlot maturity increased, wine fruity aromatic expression decreased (particularly its global intensity and the fresh, red-berry, and fermentative fruit characters). In addition, aromatic reconstitution experiments showed that esters were not, alone, responsible for the sensory differences linked to grapes' maturity. Globally, our results highlight the role of esters in the overall wine fruity aromatic expression associated to Merlot ripeness and show that their levels are impacted by other parameters than the grape content in sugars and amino acids, well known as being their precursors.


Assuntos
Vitis , Vinho , Acetatos/metabolismo , Aminoácidos/metabolismo , Ésteres/análise , Frutas/química , Nitrogênio/metabolismo , Saccharomyces cerevisiae , Açúcares/metabolismo , Vitis/química , Vinho/análise
10.
J Fungi (Basel) ; 8(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35628730

RESUMO

Viognier is a warm climate grape variety prone to loss of acidity and accumulation of excessive sugars. The yeast Lachancea thermotolerans can improve the stability and balance of such wines due to the partial conversion of sugars to lactic acid during alcoholic fermentation. This study compared the performance of five L. thermotolerans strains in co-inoculations and sequential inoculations with Saccharomyces cerevisiae in high sugar/pH Viognier fermentations. The results highlighted the dichotomy between the non-acidified and the bio-acidified L. thermotolerans treatments, with either comparable or up to 0.5 units lower pH relative to the S. cerevisiae control. Significant differences were detected in a range of flavour-active yeast volatile metabolites. The perceived acidity mirrored the modulations in wine pH/TA, as confirmed via "Rate-All-That-Apply" sensory analysis. Despite major variations in the volatile composition and acidity alike, the varietal aromatic expression (i.e., stone fruit aroma/flavour) remained conserved between the treatments.

11.
Hortic Res ; 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35184168

RESUMO

Soil microbiota has increasingly been shown to play an integral role in viticulture resilience. The emergence of new metagenomic and culturomic technologies has led to significant advances in the study of microbial biodiversity. In the agricultural sector, soil and plant microbiomes have been found to significantly improve resistance to environmental stressors and diseases, as well as influencing crop yields and fruit quality thus improving sustainability under shifting environments. Grapevines are usually cultivated as a scion grafted on rootstocks, which are selected according to pedoclimatic conditions and cultural practices, known as terroir. The rootstock connects the surrounding soil to the vine's aerial part and impacts scion growth and berry quality. Understanding rootstock and soil microbiome dynamics is a relevant and important field of study, which may be critical to improve viticulture sustainability and resilience. This review aims to highlight the relationship between grapevine roots and telluric microbiota diversity and activity. In addition, this review explores the concept of core microbiome regarding potential applications of soil microbiome engineering with the goal of enhancing grapevine adaptation to biotic and abiotic stress.

12.
Food Chem ; 349: 129015, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33545601

RESUMO

Wines from warm(ing) climates often contain excessive ethanol but lack acidity. The yeast Lachancea thermotolerans can ameliorate such wines due to partial conversion of sugars to lactic acid during alcoholic fermentation. This study compared the performance of five L. thermotolerans strains in two inoculation modalities (sequential and co-inoculation) to Saccharomyces cerevisiae and un-inoculated treatments in high sugar/low acidity Merlot fermentations. The pH and ethanol levels in mixed-culture dry wines were either comparable, or significantly lower than in controls (decrease of up to 0.5 units and 0.90% v/v, respectively). The analysis of volatile compounds revealed marked differences in major flavour-active yeast metabolites, including up to a thirty-fold increase in ethyl lactate in certain L. thermotolerans modalities. The wines significantly differed in acidity perception, alongside 18 other sensory attributes. Together, these results highlight the potential of some L. thermotolerans strains to produce 'fresher' wines with lower ethanol content and improved flavour/balance.


Assuntos
Saccharomycetales/metabolismo , Paladar , Vitis/química , Vitis/microbiologia , Vinho/análise , Etanol/análise , Fermentação
13.
Front Microbiol ; 12: 748416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002998

RESUMO

Changes are currently being made to winemaking processes to reduce chemical inputs [particularly sulfur dioxide (SO2)] and adapt to consumer demand. In this study, yeast growth and fungal diversity were investigated in merlot during the prefermentary stages of a winemaking process without addition of SO2. Different factors were considered, in a two-year study: vintage, maturity level and bioprotection by the adding yeast as an alternative to SO2. The population of the target species was monitored by quantitative-PCR, and yeast and filamentous fungi diversity was determined by 18S rDNA metabarcoding. A gradual decrease of the α-diversity during the maceration process was highlighted. Maturity level played a significant role in yeast and fungal abundance, which was lower at advanced maturity, while vintage had a strong impact on Hanseniaspora spp. population level and abundance. The presence of SO2 altered the abundance of yeast and filamentous fungi, but not their nature. The absence of sulfiting led to an unexpected reduction in diversity compared to the presence of SO2, which might result from the occupation of the niche by certain dominant species, namely Hanseniaspora spp. Inoculation of the grape juice with non-Saccharomyces yeast resulted in a decrease in the abundance of filamentous fungi generally associated with a decline in grape must quality. Lower abundance and niche occupation by bioprotection agents were observed at the overripened stage, thus suggesting that doses applied should be reconsidered at advanced maturity. Our study confirmed the bioprotective role of Metschnikowia pulcherrima and Torulaspora delbrueckii in a context of vinification without sulfites.

14.
Front Microbiol ; 11: 571067, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013803

RESUMO

Brettanomyces bruxellensis is the main spoilage microbial agent in red wines. The use of fungal chitosan has been authorized since 2009 as a curative treatment to eliminate this yeast in conventional wines and in 2018 in organic wines. As this species is known to exhibit great genetic and phenotypic diversity, we examined whether all the strains responded the same way to chitosan treatment. A collection of 53 strains of B. bruxellensis was used. In the conditions of the reference test, all were at least temporarily affected by the addition of chitosan to wine, with significant decrease of cultivable population. Some (41%) were very sensitive and no cultivable yeast was detected in wine or lees after 3 days of treatment, while others (13%) were tolerant and, after a slight drop in cultivability, resumed growth between 3 and 10 days and remained able to produce spoilage compounds. There were also many strains with intermediate behavior. The strain behavior was only partially linked to the strain genetic group. This behavior was little modulated by the physiological state of the strain or the dose of chitosan used (within the limits of the authorized doses). On the other hand, for a given strain, the sensitivity to chitosan treatment was modulated by the chitosan used and by the properties of the wine in which the treatment was carried out.

15.
Sci Rep ; 10(1): 16214, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004911

RESUMO

Saccharomyces cerevisiae is the main actor of wine fermentation but at present, still little is known about the factors impacting its distribution in the vineyards. In this study, 23 vineyards and 7 cellars were sampled over 2 consecutive years in the Bordeaux and Bergerac regions. The impact of geography and farming system and the relation between grape and vat populations were evaluated using a collection of 1374 S. cerevisiae merlot grape isolates and 289 vat isolates analyzed at 17 microsatellites loci. A very high genetic diversity of S. cerevisiae strains was obtained from grape samples, higher in conventional farming system than in organic one. The geographic appellation and the wine estate significantly impact the S. cerevisiae population structure, whereas the type of farming system has a weak global effect. When comparing cellar and vineyard populations, we evidenced the tight connection between the two compartments, based on the high proportion of grape isolates (25%) related to the commercial starters used in the cellar and on the estimation of bidirectional geneflows between the vineyard and the cellar compartments.


Assuntos
Biodiversidade , DNA Fúngico/análise , Atividades Humanas , Saccharomyces cerevisiae/genética , Vitis/microbiologia , DNA Fúngico/genética , Fazendas , Fermentação , Humanos , Repetições de Microssatélites , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/isolamento & purificação
16.
Front Microbiol ; 11: 1331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695077

RESUMO

Chromosomal rearrangements (CR) such as translocations, duplications and inversions play a decisive role in the adaptation of microorganisms to specific environments. In enological Saccharomyces cerevisiae strains, CR involving the promoter region of the gene SSU1 lead to a higher sulfite tolerance by enhancing the SO2 efflux. To date, three different SSU1 associated CR events have been described, including translocations XV-t-XVI and VIII-t-XVI and inversion inv-XVI. In the present study, we developed a multiplex PCR method (SSU1 checkup) that allows a rapid characterization of these three chromosomal configurations in a single experiment. Nearly 600 S. cerevisiae strains collected from fermented grape juice were genotyped by microsatellite markers. We demonstrated that alleles of the SSU1 promoter are differently distributed according to the wine environment (cellar versus vineyard) and the nature of the grape juice. Moreover, rearranged SSU1 promoters are significantly enriched among commercial starters. In addition, the analysis of nearly isogenic strains collected in wine related environments demonstrated that the inheritance of these CR shapes the genetic diversity of clonal populations. Finally, the link between the nature of SSU1 promoter and the tolerance to sulfite was statistically validated in natural grape juice containing various SO2 concentrations. The SSU1 checkup is therefore a convenient new tool for addressing population genetics questions and for selecting yeast strains by using molecular markers.

17.
Food Microbiol ; 87: 103379, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31948620

RESUMO

Brettanomyces bruxellensis is a yeast species found in many fermented matrices. A high level of genetic diversity prevails in this species and was recently connected with tolerance to sulfur dioxide, the main preservative used in wine. We therefore examine other phenotypes that may modulate the ability of the species to spoil wine, in a selection of representative strains. The species shows a fairly high homogeneity with respect to the carbohydrates that can support growth, but more diverse behaviors regarding tolerance to low pH or ethanol. Thought no clear link can be drawn with genotype, some strains appear more tolerant than the others, mainly in the AWRI1499 like genetic group. Volatile phenol production is ubiquitous within the species, independent from yeast growth profile and not affected by the nature of the growth substrate. The specific production. n rate of volatile phenol production raises in case of increased aeration. It is little affected by pH decrease until 3.0 or by ethanol concentration increase up to 12% vol, but it decreased in case of increased constraint (pH < 3.0, Ethanol ≥14% vol) or combination of constraints. All the strain studied have thus the ability to spoil wine but some outstanding dangerous strains can even spoil the wine with high level of constrainst.


Assuntos
Brettanomyces/isolamento & purificação , Vinho/microbiologia , Brettanomyces/efeitos dos fármacos , Brettanomyces/crescimento & desenvolvimento , Brettanomyces/metabolismo , Etanol/metabolismo , Conservantes de Alimentos/farmacologia , Genótipo , Concentração de Íons de Hidrogênio , Fenótipo , Dióxido de Enxofre/farmacologia , Vinho/análise
18.
PLoS One ; 14(12): e0222749, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31851678

RESUMO

Brettanomyces bruxellensis is the main wine spoiler yeast all over the world, yet the structure of the populations associated with winemaking remains elusive. In this work, we considered 1411 wine isolates from 21 countries that were genotyped using twelve microsatellite markers. We confirmed that B. bruxellensis isolates from wine environments show high genetic diversity, with 58 and 42% of putative triploid and diploid individuals respectively distributed in 5 main genetic groups. The distribution in the genetic groups varied greatly depending on the country and/or the wine-producing region. However, the two possible triploid wine groups showing sulfite resistance/tolerance were identified in almost all regions/countries. Genetically identical isolates were also identified. The analysis of these clone groups revealed that a given genotype could be isolated repeatedly in the same winery over decades, demonstrating unsuspected persistence ability. Besides cellar residency, a great geographic dispersal was also evidenced, with some genotypes isolated in wines from different continents. Finally, the study of old isolates and/or isolates from old vintages revealed that only the diploid groups were identified prior 1990 vintages. The putative triploid groups were identified in subsequent vintages, and their proportion has increased steadily these last decades, suggesting adaptation to winemaking practices such as sulfite use. A possible evolutionary scenario explaining these results is discussed.


Assuntos
Brettanomyces/genética , Brettanomyces/isolamento & purificação , DNA Fúngico/análise , Microbiologia de Alimentos , Vinho/análise , Brettanomyces/crescimento & desenvolvimento , DNA Fúngico/genética , Fermentação , Genótipo , Geografia , Vinho/microbiologia
19.
Microorganisms ; 7(11)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717787

RESUMO

The study of yeast biodiversity represents an important step in the preservation of the local heritage, and this work in particular has an innovative character since no further studies have investigated 'Merwah', one of the main grape varieties used in winemaking in Lebanon. To gain deeper knowledge of the genetic diversity and population structure of native Saccharomyces cerevisiae wine strains, 202 isolates were collected during spontaneous alcoholic fermentation of eight must/wine samples of cultivar 'Merwah', over two consecutive years (2016, 2017) in a traditional winery in Mount Lebanon (1400 m a.s.l.). The isolates were identified as S. cerevisiae on the basis of their morphology and preliminary sequence analysis of their internal transcribed spacer (ITS) PCR. They were then characterised at the strain level by interdelta PCR and genotyped using multiplex PCR reactions of 12 microsatellite markers. High genetic diversity was observed for the studied population. To select potential yeast starter strains from this population, micro-fermentations were carried out for 22 S. cerevisiae strains that were selected as representative of the 'Merwah' wine yeast population in order to determine their technological and oenological properties. Three indigenous yeast strains might represent candidates for pilot-scale fermentation in the winery, based on relevant features such as high fermentation vigour, low production of volatile acidity and H2S and low residual sugar content at the end of alcoholic fermentation.

20.
Yeast ; 36(6): 411-420, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30861592

RESUMO

The yeast species Starmerella bacillaris (synonym Candida zemplinina) is widely associated with oenological ecosystems and is frequently isolated from grape and grape must. Previous work showed that the genetic diversity of this species is high in wine environments and it is shaped by geographic location. Most analysed C. zemplinina strains, however, have been isolated from Vitis vinifera, disregarding the existence of other worldwide-distributed Vitis species used in winemaking. In this work, we address the impact of the Vitis species and geographic location on the genetic diversity of C. zemplinina. Microsatellite genotyping analysis was applied to two remarkable populations of C. zemplinina from Argentina and Portugal (Azores Archipelago), isolated from neighbouring V. vinifera and Vitis labrusca vineyards. The study also included a large population of previously characterized worldwide-isolated C. zemplinina strains. Genetic analyses confirmed that geographic localization significantly shaped the genetic diversity of C. zemplinina. No genetic differentiation on the basis of the Vitis species was recorded, indicating that C. zemplinina populations from neighbouring V. vinifera and V. labrusca vineyards are genetically homogeneous. In addition, no impact of the vintage was found on the C. zemplinina populations being both highly diversified and homogeneous during initial stages of alcoholic fermentation. Altogether, these results confirmed that winemaking-related factors (i.e., vintage, Vitis species, and alcoholic fermentation) do not impact the genetic diversity of C. zemplinina and that only geographic localization significantly shapes this yeast species.


Assuntos
Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Vitis/microbiologia , Vinho/microbiologia , Argentina , Análise por Conglomerados , DNA Fúngico/genética , Etanol/metabolismo , Fazendas , Fermentação , Variação Genética , Genética Populacional , Genótipo , Repetições de Microssatélites/genética , Portugal , Saccharomycetales/classificação , Saccharomycetales/metabolismo , Vitis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...