Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(41): e2302178, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37318244

RESUMO

Tuning the optoelectronic properties of donor-acceptor conjugated polymers (D-A CPs) is of great importance in designing various organic optoelectronic devices. However, there remains a critical challenge in precise control of bandgap through synthetic approach, since the chain conformation also affects molecular orbital energy levels. Here, D-A CPs with different acceptor units are explored that show an opposite trend in energy band gaps with the increasing length of oligothiophene donor units. By investigating their chain conformation and molecular orbital energy, it is found that the molecular orbital energy alignment between donor and acceptor units plays a crucial role in dictating the final optical bandgap of D-A CPs. For polymers with staggered orbital energy alignment, the higher HOMO with increasing oligothiophene length leads to a narrowing of the optical bandgap despite decreased chain rigidity. On the other hand, for polymers with sandwiched orbital energy alignment, the increased band gap with increasing oligothiophene length originates from the reduction of bandwidth due to more localized charge density distribution. Thus, this work provides a molecular understanding of the role of backbone building blocks on the chain conformation and bandgaps of D-A CPs for organic optoelectronic devices through the conformation design and segment orbital energy alignment.

2.
Sci Rep ; 12(1): 12078, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840697

RESUMO

Glioblastoma is one of the most aggressive types of cancer with success of therapy being hampered by the existence of treatment resistant populations of stem-like Tumour Initiating Cells (TICs) and poor blood-brain barrier drug penetration. Therapies capable of effectively targeting the TIC population are in high demand. Here, we synthesize spherical diketopyrrolopyrrole-based Conjugated Polymer Nanoparticles (CPNs) with an average diameter of 109 nm. CPNs were designed to include fluorescein-conjugated Hyaluronic Acid (HA), a ligand for the CD44 receptor present on one population of TICs. We demonstrate blood-brain barrier permeability of this system and concentration and cell cycle phase-dependent selective uptake of HA-CPNs in CD44 positive GBM-patient derived cultures. Interestingly, we found that uptake alone regulated the levels and signaling activity of the CD44 receptor, decreasing stemness, invasive properties and proliferation of the CD44-TIC populations in vitro and in a patient-derived xenograft zebrafish model. This work proposes a novel, CPN- based, and surface moiety-driven selective way of targeting of TIC populations in brain cancer.


Assuntos
Glioblastoma , Nanopartículas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/patologia , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/farmacologia , Polímeros/farmacologia , Peixe-Zebra/metabolismo
3.
ACS Omega ; 4(27): 22591-22600, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31909343

RESUMO

A nanoprecipitation procedure was utilized to prepare novel diketopyrrolopyrrole-based semiconducting polymer nanoparticles (SPNs) with hyaluronic acid (HA) and polysorbate 80. The nanoprecipitation led to the formation of spherical nanoparticles with average diameters ranging from 100 to 200 nm, and a careful control over the structure of the parent conjugated polymers was performed to probe the influence of π-conjugation on the final photophysical and thermal stability of the resulting SPNs. Upon generation of a series of novel SPNs, the optical and photophysical properties of the new nanomaterials were probed in solution using various techniques including transmission electron microscopy, dynamic light scattering, small-angle neutron scattering, transient absorption, and UV-vis spectroscopy. A careful comparison was performed between the different SPNs to evaluate their excited-state dynamics and photophysical properties, both before and after nanoprecipitation. Interestingly, although soluble in organic solution, the nanoparticles were found to exhibit aggregative behavior, resulting in SPNs that exhibit excited-state behaviors that are very similar to aggregated polymer solutions. Based on these findings, the formation of HA- and polysorbate 80-based nanoparticles does not influence the photophysical properties of the conjugated polymers, thus opening new opportunities for the design of bioimaging agents and nanomaterials for health-related applications.

4.
Langmuir ; 34(40): 12126-12136, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30208712

RESUMO

A new strategy toward functional materials with novel properties and well-defined structures has been developed through the topochemical polymerization of diacetylene-containing diketopyrrolopyrrole (DPP) derivatives. In order to enable the efficient photopolymerization and cross-linking of the materials, a rational design of DPP-based derivatives has been performed to incorporate amide moieties, thus enabling the formation of intermolecular hydrogen bonds and the formation of an organogel. The new materials showed good gelation properties in aromatic solvents, resulting in the formation of a dense fibrous network in the gel state. Upon UV irradiation, the supramolecular self-assemblies obtained were shown to be efficiently cross-linked through the conversion of diacetylene into polydiacetylene. A detailed investigation of new resulting materials was performed by a combination of morphological characterization tools, including X-ray diffraction, Raman spectroscopy, and atomic force microscopy. Our results demonstrate that the topochemical polymerization of diacetylene-containing DPP-based compounds is a promising strategy toward new electroactive and well-defined materials, without the use of catalysts or additives, thus creating new opportunities for the preparation and processing of π-conjugated materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...