Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38764181

RESUMO

OBJECTIVE: Obesity is associated with alterations in eating behavior and neurocognitive function. In this study, we investigate the effect of obesity on brain energy utilization, including brain glucose transport and metabolism. METHODS: A total of 11 lean participants and 7 young healthy participants with obesity (mean age, 27 years) underwent magnetic resonance spectroscopy scanning coupled with a hyperglycemic clamp (target, ~180 mg/dL) using [1-13C] glucose to measure brain glucose uptake and metabolism, as well as peripheral markers of insulin resistance. RESULTS: Individuals with obesity demonstrated an ~20% lower ratio of brain glucose uptake to cerebral glucose metabolic rate (Tmax/CMRglucose) than lean participants (2.12 ± 0.51 vs. 2.67 ± 0.51; p = 0.04). The cerebral tricarboxylic acid cycle flux (VTCA) was similar between the two groups (p = 0.64). There was a negative correlation between total nonesterified fatty acids and Tmax/CMRglucose (r = -0.477; p = 0.045). CONCLUSIONS: We conclude that CMRglucose is unlikely to differ between groups due to similar VTCA, and, therefore, the glucose transport Tmax is lower in individuals with obesity. These human findings suggest that obesity is associated with reduced cerebral glucose transport capacity even at a young age and in the absence of other cardiometabolic comorbidities, which may have implications for long-term brain function and health.

2.
Brain Sci ; 13(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38137114

RESUMO

After recovering from the acute COVID-19 illness, a substantial proportion of people continue experiencing post-acute sequelae of COVID-19 (PASC), also termed "long COVID". Their quality of life is adversely impacted by persistent cognitive dysfunction and affective distress, but the underlying neural mechanisms are poorly understood. The present study recruited a group of mostly young, previously healthy adults (24.4 ± 5.2 years of age) who experienced PASC for almost 6 months following a mild acute COVID-19 illness. Confirming prior evidence, they reported noticeable memory and attention deficits, brain fog, depression/anxiety, fatigue, and other symptoms potentially suggestive of excitation/inhibition imbalance. Proton magnetic resonance spectroscopy (1H-MRS) was used to examine the neurochemical aspects of cell signaling with an emphasis on GABA levels in the occipital cortex. The PASC participants were compared to a control (CNT) group matched in demographics, intelligence, and an array of other variables. Controlling for tissue composition, biological sex, and alcohol intake, the PASC group had lower GABA+/water than CNT, which correlated with depression and poor sleep quality. The mediation analysis revealed that the impact of PASC on depression was partly mediated by lower GABA+/water, indicative of cortical hyperexcitability as an underlying mechanism. In addition, N-acetylaspartate (NAA) tended to be lower in the PASC group, possibly suggesting compromised neuronal integrity. Persistent neuroinflammation may contribute to the pathogenesis of PASC-related neurocognitive dysfunction.

3.
Eur J Psychotraumatol ; 14(2): 2246338, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37642398

RESUMO

Background: Early trauma predicts poor psychological and physical health. Glutamatergic synaptic processes offer one avenue for understanding this relationship, given glutamate's abundance and involvement in reward and stress sensitivity, emotion, and learning. Trauma-induced glutamatergic excitotoxicity may alter neuroplasticity and approach/avoidance tendencies, increasing risk for psychiatric disorders. Studies examine upstream or downstream effects instead of glutamatergic synaptic processes in vivo, limiting understanding of how trauma affects the brain.Objective: In a pilot study using a previously published data set, we examine associations between early trauma and a proposed measure of synaptic strength in vivo in one of the largest human samples to undergo Carbon-13 (13C MRS) magnetic resonance spectroscopy. Participants were 18 healthy controls and 16 patients with PTSD (male and female).Method: Energy per cycle (EPC), which represents the ratio of neuronal oxidative energy production to glutamate neurotransmitter cycling, was generated as a putative measure of glutamatergic synaptic strength.Results: Results revealed that early trauma was positively correlated with EPC in individuals with PTSD, but not in healthy controls. Increased synaptic strength was associated with reduced behavioural inhibition, and EPC showed stronger associations between reward responsivity and early trauma for those with higher EPC.Conclusion: In the largest known human sample to undergo 13C MRS, we show that early trauma is positively correlated with EPC, a direct measure of synaptic strength. Our study findings have implications for pharmacological treatments thought to impact synaptic plasticity, such as ketamine and psilocybin.


Abnormalities in the strength of synaptic connections have been implicated in trauma and trauma-related disorders but not directly examined.We used magnetic resonance spectroscopy to investigate the association between early trauma and an in vivo measure of synaptic strength.For people with posttraumatic stress disorder, as early trauma severity increased, synaptic strength increased, highlighting the potential for treatments thought to change synaptic connections in trauma-related disorders.


Assuntos
Encéfalo , Ketamina , Humanos , Feminino , Masculino , Projetos Piloto , Emoções , Glutamatos
4.
NMR Biomed ; : e4957, 2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37088548

RESUMO

The olfactory bulb (OB) plays a fundamental role in the sense of smell and has been implicated in several pathologies, including Alzheimer's disease. Despite its importance, high metabolic activity and unique laminar architecture, the OB is not frequently studied using MRS methods, likely due to the small size and challenging location. Here we present a detailed metabolic characterization of OB metabolism, in terms of both static metabolite concentrations using 1 H MRS and metabolic fluxes associated with neuro-energetics and neurotransmission by tracing the dynamic 13 C flow from intravenously administered [1,6-13 C2 ]-glucose, [2-13 C]-glucose and [2-13 C]-acetate to downstream metabolites, including [4-13 C]-glutamate, [4-13 C]-glutamine and [2-13 C]-GABA. The unique laminar architecture and associated metabolism of the OB, distinctly different from that of the cerebral cortex, is characterized by elevated GABA and glutamine levels, as well as increased GABAergic and astroglial energy metabolism and neurotransmission. The results show that, despite the technical challenges, high-quality 1 H and 1 H-[13 C] MR spectra can be obtained from the rat OB in vivo. The derived metabolite concentrations and metabolic rates demonstrate a unique metabolic profile for the OB. The metabolic model provides a solid basis for future OB studies on functional activation or pathological conditions.

5.
Cell Metab ; 35(1): 212-226.e4, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36516861

RESUMO

The mammalian succinate dehydrogenase (SDH) complex has recently been shown as capable of operating bidirectionally. Here, we develop a method (Q-Flux) capable of measuring absolute rates of both forward (VSDH(F)) and reverse (VSDH(R)) flux through SDH in vivo while also deconvoluting the amount of glucose derived from four discreet carbon sources in the liver. In validation studies, a mitochondrial uncoupler increased net SDH flux by >100% in awake rodents but also increased SDH cycling. During hyperglucagonemia, attenuated pyruvate cycling enhances phosphoenolpyruvate carboxykinase efficiency to drive increased gluconeogenesis, which is complemented by increased glutaminase (GLS) flux, methylmalonyl-CoA mutase (MUT) flux, and glycerol conversion to glucose. During hyperinsulinemic-euglycemic clamp, both pyruvate carboxylase and GLS are suppressed, while VSDH(R) is increased. Unstimulated MUT is a minor anaplerotic reaction but is readily induced by small amounts of propionate, which elicits glucagon-like metabolic rewiring. Taken together, Q-Flux yields a comprehensive picture of hepatic mitochondrial metabolism and should be broadly useful to researchers.


Assuntos
Metilmalonil-CoA Mutase , Succinato Desidrogenase , Animais , Glucose/metabolismo , Glutaminase/metabolismo , Fígado/metabolismo , Metilmalonil-CoA Mutase/metabolismo , Proteínas/metabolismo , Ácido Pirúvico/metabolismo , Succinato Desidrogenase/metabolismo , Roedores
6.
Neuroimage Clin ; 35: 103091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35753236

RESUMO

Binge drinking refers to a pattern of alcohol intake that raises blood alcohol concentration to or above legal intoxication levels. It is common among young adults and is associated with health risks that scale up with alcohol intake. Acute intoxication depresses neural activity via complex signaling mechanisms by enhancing inhibition mediated by gamma-amino butyric acid (GABA), and by decreasing excitatory glutamatergic effects. Evidence primarily rooted in animal research indicates that the brain compensates for the acute depressant effects under the conditions of habitual heavy use. These neuroadaptive changes are reflected in neural hyperexcitability via downregulated inhibitory signaling, which becomes apparent as withdrawal symptoms. However, human evidence on the compensatory reduction in GABA signaling is scant. The neurochemical aspect of this mechanistic model was evaluated in the present study with proton magnetic resonance spectroscopy (1H-MRS) which is sensitive to GABA plus macromolecule signal (GABA + ). Furthermore, we examined sex differences in GABA + levels as a function of a recent history of binge drinking, given interactions between endogenous neurosteroids, GABA signaling, and alcohol. The study recruited young adult women and men (22.2 ± 2.8 years of age) who were classified as binge drinkers (BDs, N = 52) if they reported ≥ 5 binge episodes in the previous six months. Light drinkers (LDs, N = 49) reported drinking regularly, but not exceeding ≤ 2 binge episodes in the past six months. GABA-edited 1H-MR spectra were acquired from the occipital cortex at 3 T with the MEGA-PRESS sequence. GABA + signal was analyzed relative to water and total creatine (Cr) levels as a function of binge drinking history and sex. Controlling for within-voxel tissue composition, both GABA + indices showed decreased GABA + levels in BDs relative to LDs. The reduced GABA + concentration was associated with occasional high-intensity drinking in the BD group. This evidence is consistent with compensatory GABA downregulation that accompanies alcohol misuse, tipping the excitation/inhibition balance towards hyperexcitability. Analysis of the time course of GABA + neuroplasticity indicated that GABA + was lowest when measured one day after the last drinking occasion in BDs. While the BD vs LD differences were primarily driven by LD women, there was no interaction between Sex and a history of binge drinking. GABA + was higher in LD women compared to LD men. Aligned with the allostasis model, the mechanistic compensatory GABA downregulation observed in young emerging adults engaging in occasional binge drinking complements direct neural measures of hyperexcitability in BDs. Notably, these results suggest that neuroadaptation to alcohol is detectable at the levels of consumption that are within a normative range, and may contribute to adverse health outcomes.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Consumo de Bebidas Alcoólicas , Concentração Alcoólica no Sangue , Encéfalo , Pré-Escolar , Etanol , Feminino , Humanos , Masculino , Adulto Jovem , Ácido gama-Aminobutírico
7.
J Magn Reson ; 341: 107247, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35691241

RESUMO

Gradient modulated RF pulses, especially gradient offset independent adiabaticity (GOIA) pulses, are increasingly gaining attention for high field clinical magnetic resonance spectroscopy and spectroscopic imaging (MRS/MRSI) due to the lower peak B1 amplitude and associated power demands achievable relative to its non-modulated adiabatic full passage counterparts. In this work we describe the development of two GOIA RF pulses: 1) A power efficient, 3.0 ms wideband uniform rate with smooth truncation (WURST) modulated RF pulse with 15 kHz bandwidth compatible with a clinically feasible peak B1 amplitude of 0.87 kHz (or 20 µT), and 2) A highly selective asymmetric 6.66 ms RF pulse with 20 kHz bandwidth designed to achieve a single-sided, fractional transition width of only 1.7%. Effects of potential asynchrony between RF and gradient-modulated (GM) waveforms for 3 ms GOIA-WURST RF pulses was evaluated by simulation and experimentally. Results demonstrate that a 20+ µs asynchrony between RF and GM functions substantially degrades inversion performance when using large RF offsets to achieve translation. A projection-based method is presented that allows a quick calibration of RF and GM asynchrony on pre-clinical/clinical MR systems. The asymmetric GOIA pulse was implemented within a multi-pulse OVS sequence to achieve power efficient, highly-selective, and B1 and T1-independent signal suppression for extracranial lipid suppression. The developed GOIA pulses were utilized with linear gradient modulation (X, Y, Z gradient fields), and with second-order-field modulations (Z2, X2Y2 gradient fields) to provide elliptically-shaped regions-of-interest for MRS and MRSI acquisitions. Both described GOIA-RF pulses have substantial clinical value; specifically, the 3.0 ms GOIA-WURST pulse is beneficial to realize short TE sLASER localized proton MRS/MRSI sequences, and the asymmetric GOIA RF pulse has applications in highly selective outer volume signal suppression to allow interrogation of tissue proximal to extracranial lipids with full-intensity.


Assuntos
Imageamento por Ressonância Magnética , Processamento de Sinais Assistido por Computador , Encéfalo/metabolismo , Frequência Cardíaca , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
8.
Chronic Stress (Thousand Oaks) ; 6: 24705470221092734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35434443

RESUMO

Background: Trauma and chronic stress are believed to induce and exacerbate psychopathology by disrupting glutamate synaptic strength. However, in vivo in human methods to estimate synaptic strength are limited. In this study, we established a novel putative biomarker of glutamatergic synaptic strength, termed energy-per-cycle (EPC). Then, we used EPC to investigate the role of prefrontal neurotransmission in trauma-related psychopathology. Methods: Healthy controls (n = 18) and patients with posttraumatic stress (PTSD; n = 16) completed 13C-acetate magnetic resonance spectroscopy (MRS) scans to estimate prefrontal EPC, which is the ratio of neuronal energetic needs per glutamate neurotransmission cycle (VTCA/VCycle). Results: Patients with PTSD were found to have 28% reduction in prefrontal EPC (t = 3.0; df = 32, P = .005). There was no effect of sex on EPC, but age was negatively associated with prefrontal EPC across groups (r = -0.46, n = 34, P = .006). Controlling for age did not affect the study results. Conclusion: The feasibility and utility of estimating prefrontal EPC using 13C-acetate MRS were established. Patients with PTSD were found to have reduced prefrontal glutamatergic synaptic strength. These findings suggest that reduced glutamatergic synaptic strength may contribute to the pathophysiology of PTSD and could be targeted by new treatments.

9.
Diabetologia ; 65(5): 895-905, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247067

RESUMO

AIMS/HYPOTHESIS: We have previously shown that individuals with uncontrolled type 2 diabetes have a blunted rise in brain glucose levels measured by 1H magnetic resonance spectroscopy. Here, we investigate whether reductions in HbA1c normalise intracerebral glucose levels. METHODS: Eight individuals (two men, six women) with poorly controlled type 2 diabetes and mean ± SD age 44.8 ± 8.3 years, BMI 31.4 ± 6.1 kg/m2 and HbA1c 84.1 ± 16.2 mmol/mol (9.8 ± 1.4%) underwent 1H MRS scanning at 4 Tesla during a hyperglycaemic clamp (~12.21 mmol/l) to measure changes in cerebral glucose at baseline and after a 12 week intervention that improved glycaemic control through the use of continuous glucose monitoring, diabetes regimen intensification and frequent visits to an endocrinologist and nutritionist. RESULTS: Following the intervention, mean ± SD HbA1c decreased by 24.3 ± 15.3 mmol/mol (2.1 ± 1.5%) (p=0.006), with minimal weight changes (p=0.242). Using a linear mixed-effects regression model to compare glucose time courses during the clamp pre and post intervention, the pre-intervention brain glucose level during the hyperglycaemic clamp was significantly lower than the post-intervention brain glucose (p<0.001) despite plasma glucose levels during the hyperglycaemic clamp being similar (p=0.266). Furthermore, the increases in brain glucose were correlated with the magnitude of improvement in HbA1c (r = 0.71, p=0.048). CONCLUSION/INTERPRETATION: These findings highlight the potential reversibility of cerebral glucose transport capacity and metabolism that can occur in individuals with type 2 diabetes following improvement of glycaemic control. Trial registration ClinicalTrials.gov NCT03469492.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Adulto , Glicemia/metabolismo , Automonitorização da Glicemia , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Glucose , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Cinética , Masculino , Pessoa de Meia-Idade
10.
J Cereb Blood Flow Metab ; 42(8): 1507-1523, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35048735

RESUMO

Anaplerosis occurs predominately in astroglia through the action of pyruvate carboxylase (PC). The rate of PC (Vpc) has been reported for cerebral cortex (or whole brain) of awake humans and anesthetized rodents, but regional brain rates remain largely unknown and, hence, were subjected to investigation in the current study. Awake male rats were infused with either [2-13C]glucose or [1-13C]glucose (n = 27/30) for 8, 15, 30, 60 or 120 min, followed by rapid euthanasia with focused-beam microwave irradiation to the brain. Blood plasma and extracts of cerebellum, hippocampus, striatum, and cerebral cortex were analyzed by 1H-[13C]-NMR to establish 13C-enrichment time courses for glutamate-C4,C3,C2, glutamine-C4,C3, GABA-C2,C3,C4 and aspartate-C2,C3. Metabolic rates were determined by fitting a three-compartment metabolic model (glutamatergic and GABAergic neurons and astroglia) to the eighteen time courses. Vpc varied by 44% across brain regions, being lowest in the cerebellum (0.087 ± 0.004 µmol/g/min) and highest in striatum (0.125 ± 0.009) with intermediate values in cerebral cortex (0.106 ± 0.005) and hippocampus (0.114 ± 0.005). Vpc constituted 13-19% of the oxidative glucose consumption rate. Combination of cerebral cortical data with literature values revealed a positive correlation between Vpc and the rates of glutamate/glutamine-cycling and oxidative glucose consumption, respectively, consistent with earlier observations.


Assuntos
Ácido Glutâmico , Piruvato Carboxilase , Animais , Encéfalo/metabolismo , Isótopos de Carbono/metabolismo , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Masculino , Neurônios/metabolismo , Neurotransmissores/metabolismo , Piruvato Carboxilase/metabolismo , Ratos , Vigília , Ácido gama-Aminobutírico/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-33309567

RESUMO

BACKGROUND: The development of treatments for cognitive deficits associated with central nervous system disorders is currently a significant medical need. Despite the great need for such therapeutics, a significant challenge in the drug development process is the paucity of robust biomarkers to assess target modulation and guide clinical decisions. We developed a novel, translatable biomarker of neuronal glutamate metabolism, the 13C-glutamate+glutamine (Glx) H3:H4 labeling ratio, in nonhuman primates using localized 1H-magnetic resonance spectroscopy combined with 13C-glucose infusions. METHODS: We began with numerical simulations in an established model of brain glutamate metabolism, showing that the 13C-Glx H3:H4 ratio should be a sensitive biomarker of neuronal tricarboxylic acid cycle activity, a key measure of overall neuronal metabolism. We showed that this biomarker can be measured reliably using a standard 1H-magnetic resonance spectroscopy method (point-resolved spectroscopy sequence/echo time = 20 ms), obviating the need for specialized hardware and pulse sequences typically used with 13C-magnetic resonance spectroscopy, thus improving overall clinical translatability. Finally, we used this biomarker in 8 male rhesus macaques before and after administration of the compound BNC375, a positive allosteric modulator of the α7 nicotinic acetylcholine receptor that enhances glutamate signaling ex vivo and elicits procognitive effects in preclinical species. RESULTS: The 13C-Glx H3:H4 ratios in the monkeys showed that BNC375 increases neuronal metabolism in nonhuman primates in vivo, detectable on an individual basis. CONCLUSIONS: This study demonstrates that the ratio of 13C-Glx H3:H4 labeling is a biomarker that may provide an objective readout of compounds affecting glutamatergic neurotransmission and could improve decision making for the development of therapeutic agents.


Assuntos
Ácido Glutâmico , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Benzetônio , Biomarcadores , Clorobenzenos , Ácido Glutâmico/metabolismo , Humanos , Macaca mulatta , Espectroscopia de Ressonância Magnética , Masculino
13.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33724953

RESUMO

Several coronavirus disease 2019 (COVID-19) studies have focused on neuropathology. In this issue of the JCI, Qin, Wu, and Chen et al. focused specifically on people whose acute infection lacked obvious neurological involvement. Severely infected patients showed abnormal gray matter volumes, white matter diffusion, and cerebral blood flow compared with healthy controls and those with mild infection. The data remain associative rather than mechanistic, but correlations with systemic immune markers suggest effects of inflammation, hypercoagulation, or other aspects of disease severity. Mechanistic research is warranted. Given the lack of obvious neurological symptoms, neurocognitive assessments were not performed, but the findings suggest that such assessments may be warranted in severely affected patients, even without obvious symptoms. Further, studying CNS involvement of other disorders with overlapping pathophysiologies such as inflammation, coagulation, hypoxia, or direct viral infection may reveal the causes for COVID-19-related neuropathology.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Humanos , SARS-CoV-2
14.
Psychopharmacology (Berl) ; 238(3): 833-844, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33410985

RESUMO

RATIONALE: After alcohol ingestion, the brain partly switches from consumption of glucose to consumption of the alcohol metabolite acetate. In heavy drinkers, the switch persists after abrupt abstinence, leading to the hypothesis that the resting brain may be "starved" when acetate levels suddenly drop during abstinence, despite normal blood glucose, contributing to withdrawal symptoms. We hypothesized that ketone bodies, like acetate, could act as alternative fuels in the brain and alleviate withdrawal symptoms. OBJECTIVES: We previously reported that a ketogenic diet during alcohol exposure reduced acute withdrawal symptoms in rats. Here, our goals were to test whether (1) we could reproduce our findings, in mice and with longer alcohol exposure; (2) ketone bodies alone are sufficient to reduce withdrawal symptoms (clarifying mechanism); (3) introduction of ketogenic diets at abstinence (a clinically more practical implementation) would also be effective. METHODS: Male C57BL/6NTac mice had intermittent alcohol exposure for 3 weeks using liquid diet. Somatic alcohol withdrawal symptoms were measured as handling-induced convulsions; anxiety-like behavior was measured using the light-dark transition test. We tested a ketogenic diet, and a ketone monoester supplement with a regular carbohydrate-containing diet. RESULTS: The regular diet with ketone monoester was sufficient to reduce handling-induced convulsions and anxiety-like behaviors in early withdrawal. Only the ketone monoester reduced handling-induced convulsions when given during abstinence, consistent with faster elevation of blood ketones, relative to ketogenic diet. CONCLUSIONS: These findings support the potential utility of therapeutic ketosis as an adjunctive treatment in early detoxification in alcohol-dependent patients seeking to become abstinent. TRIAL REGISTRATION: clinicaltrials.gov NCT03878225, NCT03255031.


Assuntos
Alcoolismo/metabolismo , Dieta Cetogênica , Corpos Cetônicos/metabolismo , Cetonas/uso terapêutico , Síndrome de Abstinência a Substâncias/prevenção & controle , Alcoolismo/sangue , Animais , Ansiedade/tratamento farmacológico , Encéfalo/metabolismo , Ensaios Clínicos como Assunto , Suplementos Nutricionais , Etanol/administração & dosagem , Etanol/efeitos adversos , Etanol/sangue , Glucose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/psicologia
15.
Cell Metab ; 32(5): 751-766.e11, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33147485

RESUMO

The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2-/- mice. Unlike other clinical secretagogues, PK activation enhanced insulin secretion but also had higher insulin content and markers of differentiation. In addition to improving insulin secretion, acute PK activation short-circuited gluconeogenesis to reduce endogenous glucose production while accelerating red blood cell glucose turnover. Four-week delivery of a PK activator in vivo remodeled PK phosphorylation, reduced liver fat, and improved hepatic and peripheral insulin sensitivity in HFD-fed rats. These data provide a preclinical rationale for PK activation to accelerate the PEP cycle to improve metabolic homeostasis and insulin sensitivity.


Assuntos
Mitocôndrias/metabolismo , Fosfoenolpiruvato/metabolismo , Animais , Homeostase , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piruvato Quinase/metabolismo , Ratos , Ratos Sprague-Dawley
16.
Cell Metab ; 32(5): 726-735.e5, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33035493

RESUMO

Alterations in muscle mitochondrial substrate preference have been postulated to play a major role in the pathogenesis of muscle insulin resistance. In order to examine this hypothesis, we assessed the ratio of mitochondrial pyruvate oxidation (VPDH) to rates of mitochondrial citrate synthase flux (VCS) in muscle. Contrary to this hypothesis, we found that high-fat-diet (HFD)-fed insulin-resistant rats did not manifest altered muscle substrate preference (VPDH/VCS) in soleus or quadriceps muscles in the fasting state. Furthermore, hyperinsulinemic-euglycemic (HE) clamps increased VPDH/VCS in both muscles in normal and insulin-resistant rats. We then examined the muscle VPDH/VCS flux in insulin-sensitive and insulin-resistant humans and found similar relative rates of VPDH/VCS, following an overnight fast (∼20%), and similar increases in VPDH/VCS fluxes during a HE clamp. Altogether, these findings demonstrate that alterations in mitochondrial substrate preference are not an essential step in the pathogenesis of muscle insulin resistance.


Assuntos
Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Adulto , Animais , Humanos , Resistência à Insulina , Masculino , Ratos , Ratos Sprague-Dawley
18.
Eur Neuropsychopharmacol ; 35: 71-80, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32418842

RESUMO

Early life stress (ELS) and glutamate neurotransmission have been implicated in the pathophysiology of major depressive disorder (MDD). In non-human primates, ELS was positively correlated with cortical Glx (i.e., glutamate + glutamine). However, the relationship between ELS and cortical glutamate in adult patients with MDD is not fully known. Using 1H Magnetic Resonance Spectroscopy (MRS), we conducted exploratory analyses measuring occipital cortical glutamate and glutamine levels in 36 medication-free patients with MDD. In a subsample (n=11), we measured dynamic glutamate/glutamine cycling (Vcycle) using advanced 13C MRS methods. ELS history was assessed using Early-life Trauma Inventory (ETI). Exploratory analyses suggest a relationship between ETI and glutamine as reflected by a significant positive correlation between ETI scores and occipital glutamine (rs=0.39, p=0.017) but not glutamate. Post-hoc analyses showed that the association with glutamine was driven by the ETI emotional abuse (ETI-EA) subscale (rs=0.39, p=0.02). Vcycle correlation with ETI was at trend level (rs=0.55, p=0.087) and significantly correlated with ETI-EA (rs=0.67, p=0.03). In this small sample of patients with MDD, those with childhood emotional abuse appear to have increased occipital glutamate neurotransmission as reflected by increased glutamate/glutamine cycling and glutamine level. Future studies would be needed to confirm this pilot evidence and to examine whether ELS effects on glutamate neurotransmission underlie the relationship between ELS and psychopathology.


Assuntos
Experiências Adversas da Infância/psicologia , Experiências Adversas da Infância/tendências , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/psicologia , Ácido Glutâmico/metabolismo , Transmissão Sináptica/fisiologia , Adulto , Feminino , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Projetos Piloto
19.
Neurochem Int ; 137: 104750, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32360130

RESUMO

Major depressive disorder is the leading cause of disability and suicidality worldwide. Here, we evaluated neural metabolic activity in prefrontal cortex (PFC) in C57BL6 mice undergoing a chronic unpredictable mild stress (CUMS) for three weeks to induce depression. Further, the efficacy of Lanicemine, a low trapping NMDA receptor antagonist, on behavioral and neurometabolic measures in CUMS mice was evaluated. The PFC neuronal and astroglial metabolic activity was evaluated by Proton Observed Carbon Edited (POCE) MR spectroscopy together with an infusion of [1,6-13C2]glucose and [2-13C]acetate, respectively. The rates of glutamatergic, GABAergic and astrocytic TCA cycles and neurotransmitter cycling were obtained by fitting a three-compartment metabolic model to 13C turnover of amino acids. Mice subjected to CUMS exhibited significantly reduced sucrose preference (CUMS 58.0 ± 12.5%, n = 29; Control 86.3 ± 6.4%, n = 30; p < 0.0001), and increased immobility (CUMS 146.1 ± 60.8s, n = 29; Control 29.9 ± 19.3s, n = 30; p < 0.0001) in the forced swim test. The concentrations of 13C labeled amino acids from [2-13C]acetate were decreased suggesting reduced astroglial metabolic activity in CUMS mice. The glutamatergic and GABAergic TCA cycle rates were decreased in CUMS mice when compared with controls. In addition, GABA-glutamine and glutamate-glutamine neurotransmitter cycling were reduced in mice subjected to CUMS regimen. Most interestingly, a short time intervention of lanicemine restored behavioral measures (sucrose preference and immobility), and rates of glucose oxidation in glutamatergic and GABAergic neurons in CUMS mice. In summary, our findings suggest that depression leads to a reduction in excitatory and inhibitory neurotransmission in PFC, and targeting glutamatergic pathway may have potential therapeutic role in chronic depression.


Assuntos
Astrócitos/metabolismo , Depressão/tratamento farmacológico , Neurônios/metabolismo , Neurotransmissores/metabolismo , Fenetilaminas/metabolismo , Piridinas/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Depressão/metabolismo , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Fenetilaminas/farmacologia , Piridinas/farmacologia , Estresse Psicológico/metabolismo , Sacarose/metabolismo
20.
Proc Natl Acad Sci U S A ; 117(14): 8166-8176, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32188779

RESUMO

Multiple insulin-regulated enzymes participate in hepatic glycogen synthesis, and the rate-controlling step responsible for insulin stimulation of glycogen synthesis is unknown. We demonstrate that glucokinase (GCK)-mediated glucose phosphorylation is the rate-controlling step in insulin-stimulated hepatic glycogen synthesis in vivo, by use of the somatostatin pancreatic clamp technique using [13C6]glucose with metabolic control analysis (MCA) in three rat models: 1) regular chow (RC)-fed male rats (control), 2) high fat diet (HFD)-fed rats, and 3) RC-fed rats with portal vein glucose delivery at a glucose infusion rate matched to the control. During hyperinsulinemia, hyperglycemia dose-dependently increased hepatic glycogen synthesis. At similar levels of hyperinsulinemia and hyperglycemia, HFD-fed rats exhibited a decrease and portal delivery rats exhibited an increase in hepatic glycogen synthesis via the direct pathway compared with controls. However, the strong correlation between liver glucose-6-phosphate concentration and net hepatic glycogen synthetic rate was nearly identical in these three groups, suggesting that the main difference between models is the activation of GCK. MCA yielded a high control coefficient for GCK in all three groups. We confirmed these findings in studies of hepatic GCK knockdown using an antisense oligonucleotide. Reduced liver glycogen synthesis in lipid-induced hepatic insulin resistance and increased glycogen synthesis during portal glucose infusion were explained by concordant changes in translocation of GCK. Taken together, these data indicate that the rate of insulin-stimulated hepatic glycogen synthesis is controlled chiefly through GCK translocation.


Assuntos
Fígado Gorduroso/patologia , Glucoquinase/metabolismo , Glucose/metabolismo , Glicogênio Hepático/biossíntese , Fígado/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Técnicas de Silenciamento de Genes , Glucoquinase/genética , Glucose/administração & dosagem , Glucose-6-Fosfato/análise , Glucose-6-Fosfato/metabolismo , Humanos , Hiperglicemia/etiologia , Hiperglicemia/patologia , Hiperinsulinismo/etiologia , Hiperinsulinismo/patologia , Insulina/metabolismo , Resistência à Insulina , Fígado/patologia , Masculino , Metabolômica , Fosforilação , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...