Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Virol ; 98(4): e0153823, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38501924

RESUMO

Prior to nuclear export, the hepatitis B virus (HBV) pregenomic RNA may be spliced by the host cell spliceosome to form shorter RNA sequences known as splice variants. Due to deletions in the open reading frames, splice variants may encode novel fusion proteins. Although not essential for HBV replication, the role of splice variants and their novel fusion proteins largely remains unknown. Some splice variants and their encoded novel fusion proteins have been shown to impair or promote wild-type HBV replication in vitro, and although splice variants Sp3 and Sp9 are two of the most common splice variants identified to date, their in vitro replication phenotype and their impact on wild-type HBV replication are unclear. Here, we utilize greater than genome-length Sp3 and Sp9 constructs to investigate their replication phenotype in vitro, and their impact on wild-type HBV replication. We show that Sp3 and Sp9 were incapable of autonomous replication, which was rescued by providing the polymerase and core proteins in trans. Furthermore, we showed that Sp3 had no impact on wild-type HBV replication, whereas Sp9 strongly reduced wild-type HBV replication in co-transfection experiments. Knocking out Sp9 novel precore-surface and core-surface fusion protein partially restored replication, suggesting that these proteins contributed to suppression of wild-type HBV replication, providing further insights into factors regulating HBV replication in vitro. IMPORTANCE: The role of hepatitis B virus (HBV) splice variants in HBV replication and pathogenesis currently remains largely unknown. However, HBV splice variants have been associated with the development of hepatocellular carcinoma, suggesting a role in HBV pathogenesis. Several in vitro co-transfection studies have shown that different splice variants have varying impacts on wild-type HBV replication, perhaps contributing to viral persistence. Furthermore, all splice variants are predicted to produce novel fusion proteins. Sp1 hepatitis B splice protein contributes to liver disease progression and apoptosis; however, the function of other HBV splice variant novel fusion proteins remains largely unknown. We show that Sp9 markedly impairs HBV replication in a cell culture co-transfection model, mediated by expression of Sp9 novel fusion proteins. In contrast, Sp3 had no effect on wild-type HBV replication. Together, these studies provide further insights into viral factors contributing to regulation of HBV replication.


Assuntos
Hepatite B , Neoplasias Hepáticas , Isoformas de Proteínas , Proteínas Virais , Replicação Viral , Humanos , DNA Viral/genética , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Fenótipo , Isoformas de Proteínas/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Carcinoma Hepatocelular/virologia
2.
Biotechnol J ; 19(1): e2300319, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37853601

RESUMO

Infectious diseases such as Coronavirus disease 2019 (COVID-19) and Middle East respiratory syndrome (MERS) present an increasingly persistent crisis in many parts of the world. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The angiotensin-converting enzyme 2 (ACE2) is a crucial cellular receptor for SARS-CoV-2 infection. Inhibition of the interaction between SARS-CoV-2 and ACE2 has been proposed as a target for the prevention and treatment of COVID-19. We produced four recombinant plant-derived ACE2 isoforms with or without the mu tailpiece (µ-tp) of immunoglobulin M (IgM) and the KDEL endoplasmic reticulum retention motif in a plant expression system. The plant-derived ACE2 isoforms bound whole SARS-CoV-2 virus and the isolated receptor binding domains of SARS-CoV-2 Alpha, Beta, Gamma, Delta, and Omicron variants. Fusion of µ-tp and KDEL to the ACE2 protein (ACE2 µK) had enhanced binding activity with SARS-CoV-2 in comparison with unmodified ACE2 protein derived from CHO cells. Furthermore, the plant-derived ACE2 µK protein exhibited no cytotoxic effects on Vero E6 cells and effectively inhibited SARS-CoV-2 infection. The efficient and rapid scalability of plant-derived ACE2 µK protein offers potential for the development of preventive and therapeutic agents in the early response to future viral outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Enzima de Conversão de Angiotensina 2/metabolismo , Proteínas de Plantas/metabolismo , Cricetulus , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo
3.
Viruses ; 15(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38140589

RESUMO

Australia has multiple lagoviruses with differing pathogenicity. The circulation of these viruses was traditionally determined through opportunistic sampling events. In the lead up to the nationwide release of RHDVa-K5 (GI.1aP-GI.1a) in 2017, an existing citizen science program, RabbitScan, was augmented to allow members of the public to submit samples collected from dead leporids for lagovirus testing. This study describes the information obtained from the increased number of leporid samples received between 2015 and 2022 and focuses on the recent epidemiological interactions and evolutionary trajectory of circulating lagoviruses in Australia between October 2020 and December 2022. A total of 2771 samples were tested from January 2015 to December 2022, of which 1643 were lagovirus-positive. Notable changes in the distribution of lagovirus variants were observed, predominantly in Western Australia, where RHDV2-4c (GI.4cP-GI.2) was detected again in 2021 after initially being reported to be present in 2018. Interestingly, we found evidence that the deliberately released RHDVa-K5 was able to establish and circulate in wild rabbit populations in WA. Overall, the incorporation of citizen science approaches proved to be a cost-efficient method to increase the sampling area and enable an in-depth analysis of lagovirus distribution, genetic diversity, and interactions. The maintenance of such programs is essential to enable continued investigations of the critical parameters affecting the biocontrol of feral rabbit populations in Australia, as well as to enable the detection of any potential future incursions.


Assuntos
Infecções por Caliciviridae , Ciência do Cidadão , Vírus da Doença Hemorrágica de Coelhos , Lagovirus , Animais , Coelhos , Vírus da Doença Hemorrágica de Coelhos/genética , Epidemiologia Molecular , Lagovirus/genética , Filogenia , Austrália/epidemiologia
4.
J Gen Virol ; 104(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37584657

RESUMO

The genus Lagovirus of the family Caliciviridae contains some of the most virulent vertebrate viruses known. Lagoviruses infect leporids, such as rabbits, hares and cottontails. Highly pathogenic viruses such as Rabbit haemorrhagic disease virus 1 (RHDV1) cause a fulminant hepatitis that typically leads to disseminated intravascular coagulation within 24-72 h of infection, killing over 95 % of susceptible animals. Research into the pathophysiological mechanisms that are responsible for this extreme phenotype has been hampered by the lack of a reliable culture system. Here, we report on a new ex vivo model for the cultivation of lagoviruses in cells derived from the European rabbit (Oryctolagus cuniculus) and European brown hare (Lepus europaeus). We show that three different lagoviruses, RHDV1, RHDV2 and RHDVa-K5, replicate in monolayer cultures derived from rabbit hepatobiliary organoids, but not in monolayer cultures derived from cat (Felis catus) or mouse (Mus musculus) organoids. Virus multiplication was demonstrated by (i) an increase in viral RNA levels, (ii) the accumulation of dsRNA viral replication intermediates and (iii) the expression of viral structural and non-structural proteins. The establishment of an organoid culture system for lagoviruses will facilitate studies with considerable implications for the conservation of endangered leporid species in Europe and North America, and the biocontrol of overabundant rabbit populations in Australia and New Zealand.


Assuntos
Infecções por Caliciviridae , Lebres , Vírus da Doença Hemorrágica de Coelhos , Lagovirus , Animais , Gatos , Camundongos , Coelhos , Filogenia , Vírus da Doença Hemorrágica de Coelhos/genética , Lagovirus/genética , Organoides
5.
Front Immunol ; 14: 1085911, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205110

RESUMO

Introduction: It has been known for over half a century that mixing an antigen with its cognate antibody in an immune complex (IC) can enhance antigen immunogenicity. However, many ICs produce inconsistent immune responses, and the use of ICs in the development new vaccines has been limited despite the otherwise widespread success of antibody-based therapeutics. To address this problem, we designed a self-binding recombinant immune complex (RIC) vaccine which mimics the larger ICs generated during natural infection. Materials and methods: In this study, we created two novel vaccine candidates: 1) a traditional IC targeting herpes simplex virus 2 (HSV-2) by mixing glycoprotein D (gD) with a neutralizing antibody (gD-IC); and 2) an RIC consisting of gD fused to an immunoglobulin heavy chain and then tagged with its own binding site, allowing self-binding (gD-RIC). We characterized the complex size and immune receptor binding characteristics in vitro for each preparation. Then, the in vivo immunogenicity and virus neutralization of each vaccine were compared in mice. Results: gD-RIC formed larger complexes which enhanced C1q receptor binding 25-fold compared to gD-IC. After immunization of mice, gD-RIC elicited up to 1,000-fold higher gD-specific antibody titers compared to traditional IC, reaching endpoint titers of 1:500,000 after two doses without adjuvant. The RIC construct also elicited stronger virus-specific neutralization against HSV-2, as well as stronger cross-neutralization against HSV-1, although the proportion of neutralizing antibodies to total antibodies was somewhat reduced in the RIC group. Discussion: This work demonstrates that the RIC system overcomes many of the pitfalls of traditional IC, providing potent immune responses against HSV-2 gD. Based on these findings, further improvements to the RIC system are discussed. RIC have now been shown to be capable of inducing potent immune responses to a variety of viral antigens, underscoring their broad potential as a vaccine platform.


Assuntos
Anticorpos Antivirais , Complexo Antígeno-Anticorpo , Animais , Camundongos , Proteínas do Envelope Viral , Herpesvirus Humano 2 , Anticorpos Neutralizantes , Vacinas Sintéticas
6.
EBioMedicine ; 87: 104391, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36502576

RESUMO

BACKGROUND: HIV can infect multiple cells in the liver including hepatocytes, Kupffer cells and infiltrating T cells, but whether HIV can persist in the liver in people with HIV (PWH) on suppressive antiretroviral therapy (ART) remains unknown. METHODS: In a prospective longitudinal cohort of PWH and hepatitis B virus (HBV) co-infection living in Bangkok, Thailand, we collected blood and liver biopsies from 18 participants prior to and following ART and quantified HIV and HBV persistence using quantitative (q)PCR and RNA/DNAscope. Antiretroviral (ARV) drug levels were quantified using mass spectroscopy. FINDINGS: In liver biopsies taken prior to ART, HIV DNA and HIV RNA were detected by qPCR in 53% (9/17) and 47% (8/17) of participants respectively. Following a median ART duration of 3.4 years, HIV DNA was detected in liver in 61% (11/18) of participants by either qPCR, DNAscope or both, but only at very low and non-quantifiable levels. Using immunohistochemistry, HIV DNA was observed in both hepatocytes and liver infiltrating CD4+ T cells on ART. HIV RNA was not detected in liver biopsies collected on ART, by either qPCR or RNAscope. All ARVs were clearly detected in liver tissue. INTERPRETATION: Persistence of HIV DNA in liver in PWH on ART represents an additional reservoir that warrants further investigation. FUNDING: National Health and Medical Research Council of Australia (Project Grant APP1101836, 1149990, and 1135851); This project has been funded in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. 75N91019D00024.


Assuntos
Coinfecção , Infecções por HIV , Hepatite B , Humanos , Estudos Prospectivos , Tailândia , Hepatite B/complicações , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Vírus da Hepatite B/genética , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , DNA Viral/genética , Hepatócitos
7.
J Viral Hepat ; 29(8): 604-615, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35582878

RESUMO

Chronic hepatitis B (CHB) is characterized by progression through different phases of hepatitis B virus (HBV) infection and disease. Although not necessary for HBV replication, there is increasing evidence that HBV splice variants are associated with liver disease progression and pathogenesis. However, there have been no studies till date on the frequency or diversity of splice variants for different HBV genotypes across the phases of CHB. Next generation sequencing data from 404 patient samples of HBV genotype A, B, C or D in Phase I, Phase II or Phase IV of CHB was analysed for HBV splice variants using an in house bioinformatics pipeline. HBV splice variants differed in frequency and type by genotype and phase of natural history. Splice variant Sp1 was the most frequently detected (206/404, 51% of patients), followed by Sp13 (151/404 37% of patients). The frequency of variants was generally highest in Phase II (123/165, 75% of patients), a phase typically associated with enhanced immune activation, followed by Phase I (69/99, 70% of patients). Splice variants were associated with reduced hepatitis B e antigen (HBeAg) levels and statistically reduced likelihood of achieving HBsAg loss (functional cure) in Phase II patients for Sp1 and Sp13 (p = .0014 and .0156, respectively). The frequency of HBV splice variants in patient serum differed markedly by HBV genotype and phase of CHB natural history. The increased levels of HBV splice variants detected in CHB phase II patients compared with the higher replicative Phase I in particular warrants further investigation.


Assuntos
Hepatite B Crônica , Hepatite B , DNA Viral/genética , Genótipo , Antígenos de Superfície da Hepatite B/genética , Antígenos E da Hepatite B , Vírus da Hepatite B/genética , Humanos
8.
Sci Rep ; 12(1): 1005, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046461

RESUMO

The pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a public health emergency, and research on the development of various types of vaccines is rapidly progressing at an unprecedented development speed internationally. Some vaccines have already been approved for emergency use and are being supplied to people around the world, but there are still many ongoing efforts to create new vaccines. Virus-like particles (VLPs) enable the construction of promising platforms in the field of vaccine development. Here, we demonstrate that non-infectious SARS-CoV-2 VLPs can be successfully assembled by co-expressing three important viral proteins membrane (M), envelop (E) and nucleocapsid (N) in plants. Plant-derived VLPs were purified by sedimentation through a sucrose cushion. The shape and size of plant-derived VLPs are similar to native SARS-CoV-2 VLPs without spike. Although the assembled VLPs do not have S protein spikes, they could be developed as formulations that can improve the immunogenicity of vaccines including S antigens, and further could be used as platforms that can carry S antigens of concern for various mutations.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Proteínas M de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas Viroporinas/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Proteínas M de Coronavírus/genética , Proteínas M de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Humanos , Nicotiana/imunologia , Nicotiana/metabolismo , Nicotiana/virologia , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/metabolismo , Proteínas Viroporinas/genética , Proteínas Viroporinas/metabolismo
9.
Cell Death Dis ; 12(7): 641, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162831

RESUMO

A major unmet clinical need is a therapeutic capable of removing hepatitis B virus (HBV) genome from the liver of infected individuals to reduce their risk of developing liver cancer. A strategy to deliver such a therapy could utilize the ability to target and promote apoptosis of infected hepatocytes. Presently there is no clinically relevant strategy that has been shown to effectively remove persistent episomal covalently closed circular HBV DNA (cccDNA) from the nucleus of hepatocytes. We used linearized single genome length HBV DNA of various genotypes to establish a cccDNA-like reservoir in immunocompetent mice and showed that clinical-stage orally administered drugs that antagonize the function of cellular inhibitor of apoptosis proteins can eliminate HBV replication and episomal HBV genome in the liver. Primary human liver organoid models were used to confirm the clinical relevance of these results. This study underscores a clinically tenable strategy for the potential elimination of chronic HBV reservoirs in patients.


Assuntos
Antivirais/farmacologia , Azocinas/farmacologia , Compostos Benzidrílicos/farmacologia , Genoma Viral , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Hepatócitos/efeitos dos fármacos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Fígado/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Modelos Animais de Doenças , Células Hep G2 , Hepatite B/metabolismo , Hepatite B/patologia , Hepatite B/virologia , Vírus da Hepatite B/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Organoides , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Replicação Viral/efeitos dos fármacos
10.
J Vis Exp ; (167)2021 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-33522504

RESUMO

High demand for antibodies as therapeutic interventions for various infectious, metabolic, autoimmune, neoplastic, and other diseases creates a growing need in developing efficient methods for recombinant antibody production. As of 2019, there were more than 70 FDA-approved monoclonal antibodies, and there is exponential growth potential. Despite their promise, limiting factors for widespread use are manufacturing costs and complexity. Potentially, plants offer low-cost, safe, and easily scalable protein manufacturing strategies. Plants like Nicotiana benthamiana not only can correctly fold and assemble complex mammalian proteins but also can add critical post-translational modifications similar to those offered by mammalian cell cultures. In this work, by using native GFP and an acid-stable variant of green fluorescent protein (GFP) fused to human monoclonal antibodies, we were able to visualize the entire transient antibody expression and purification process from N. benthamiana plants. Depending on the experiment's purpose, native GFP fusion can ensure easier visualization during the expression phase in the plants, while acid-stable GFP fusion allows for visualization during downstream processing. This scalable and straightforward procedure can be performed by a single researcher to produce milligram quantities of highly pure antibody or antibody fusion proteins in a matter of days using only a few small plants. Such a technique can be extended to the visualization of any type of antibody purification process and potentially many other proteins, both in plant and other expression systems. Moreover, these techniques can benefit virtual instructions and be executed in a teaching laboratory by undergraduate students possessing minimal prior experience with molecular biology techniques, providing a foundation for project-based exploration with real-world applications.


Assuntos
Imunoglobulina G/biossíntese , Nicotiana/genética , Proteínas Recombinantes de Fusão/biossíntese , Agrobacterium tumefaciens/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Sequência de Bases , Cromatografia , Eletroforese em Gel de Poliacrilamida , Proteínas de Fluorescência Verde/metabolismo , Humanos , Canamicina/farmacologia , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Nicotiana/crescimento & desenvolvimento , Nicotiana/microbiologia , Raios Ultravioleta
11.
Front Immunol ; 11: 576012, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343565

RESUMO

Therapeutics based on fusing a protein of interest to the IgG Fc domain have been enormously successful, though fewer studies have investigated the vaccine potential of IgG fusions. In this study, we systematically compared the key properties of seven different plant-made human IgG1 fusion vaccine candidates using Zika virus (ZIKV) envelope domain III (ZE3) as a model antigen. Complement protein C1q binding of the IgG fusions was enhanced by: 1) antigen fusion to the IgG N-terminus; 2) removal of the IgG light chain or Fab regions; 3) addition of hexamer-inducing mutations in the IgG Fc; 4) adding a self-binding epitope tag to create recombinant immune complexes (RIC); or 5) producing IgG fusions in plants that lack plant-specific ß1,2-linked xylose and α1,3-linked fucose N-linked glycans. We also characterized the expression, solubility, and stability of the IgG fusions. By optimizing immune complex formation, a potently immunogenic vaccine candidate with improved solubility and high stability was produced at 1.5 mg IgG fusion per g leaf fresh weight. In mice, the IgG fusions elicited high titers of Zika-specific antibodies which neutralized ZIKV using only two doses without adjuvant, reaching up to 150-fold higher antibody titers than ZE3 antigen alone. We anticipate these findings will be broadly applicable to the creation of other vaccines and antibody-based therapeutics.


Assuntos
Antígenos Virais/farmacologia , Imunogenicidade da Vacina , Imunoglobulina G/farmacologia , Proteínas do Envelope Viral/farmacologia , Vacinas Virais/farmacologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Antígenos Virais/imunologia , Complemento C1q/metabolismo , Estabilidade de Medicamentos , Epitopos , Feminino , Imunização , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Camundongos Endogâmicos BALB C , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/farmacologia , Solubilidade , Nicotiana/genética , Nicotiana/metabolismo , Vacinas de Subunidades Antigênicas/farmacologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Zika virus/patogenicidade , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
12.
PLoS Pathog ; 16(9): e1008744, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898182

RESUMO

In HIV-hepatitis B virus (HBV) co-infection, adverse liver outcomes including liver fibrosis occur at higher frequency than in HBV-mono-infection, even following antiretroviral therapy (ART) that suppresses both HIV and HBV replication. To determine whether liver disease was associated with intrahepatic or circulating markers of inflammation or burden of HIV or HBV, liver biopsies and blood were collected from HIV-HBV co-infected individuals (n = 39) living in Bangkok, Thailand and naïve to ART. Transient elastography (TE) was performed. Intrahepatic and circulating markers of inflammation and microbial translocation were quantified by ELISA and bead arrays and HIV and HBV infection quantified by PCR. Liver fibrosis (measured by both transient elastography and liver biopsy) was statistically significantly associated with intrahepatic mRNA for CXCL10 and CXCR3 using linear and logistic regression analyses adjusted for CD4 T-cell count. There was no evidence of a relationship between liver fibrosis and circulating HBV DNA, qHBsAg, plasma HIV RNA or circulating cell-associated HIV RNA or DNA. Using immunohistochemistry of liver biopsies from this cohort, intrahepatic CXCL10 was detected in hepatocytes associated with inflammatory liver infiltrates in the portal tracts. In an in vitro model, we infected an HBV-infected hepatocyte cell line with HIV, followed by interferon-γ stimulation. HBV-infected cells lines produced significantly more CXCL10 than uninfected cells lines and this significantly increased in the presence of an increasing multiplicity of HIV infection. Conclusion: Enhanced production of CXCL10 following co-infection of hepatocytes with both HIV and HBV may contribute to accelerated liver disease in the setting of HIV-HBV co-infection.


Assuntos
Quimiocina CXCL10/metabolismo , Coinfecção/complicações , Infecções por HIV/complicações , HIV/isolamento & purificação , Vírus da Hepatite B/isolamento & purificação , Hepatite B/complicações , Cirrose Hepática/epidemiologia , Adulto , Austrália/epidemiologia , Estudos de Coortes , Coinfecção/virologia , Feminino , Infecções por HIV/virologia , Hepatite B/virologia , Humanos , Incidência , Cirrose Hepática/metabolismo , Cirrose Hepática/virologia , Masculino , Países Baixos/epidemiologia , Prognóstico , Tailândia/epidemiologia
13.
Vaccine ; 38(18): 3455-3463, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32173095

RESUMO

Zika virus (ZIKV) reemergence poses a significant health threat especially due to its risks to fetal development, necessitating safe and effective vaccines that can protect pregnant women. Zika envelope domain III (ZE3) has been identified as a safe and effective vaccine candidate, however it is poorly immunogenic. We previously showed that plant-made recombinant immune complex (RIC) vaccines are a robust platform to improve the immunogenicity of weak antigens. In this study, we altered the antigen fusion site on the RIC platform to accommodate N-terminal fusion to the IgG heavy chain (N-RIC), and thus a wider range of antigens, with a resulting 40% improvement in RIC expression over the normal C-terminal fusion (C-RIC). Both types of RICs containing ZE3 were efficiently assembled in plants and purified to >95% homogeneity with a simple one-step purification. Both ZE3 RICs strongly bound complement receptor C1q and elicited strong ZE3-specific antibody titers that correlated with ZIKV neutralization. When either N-RIC or C-RIC was codelivered with plant-produced hepatitis B core (HBc) virus-like particles (VLP) displaying ZE3, the combination elicited 5-fold greater antibody titers (>1,000,000) and more strongly neutralized ZIKV than either RICs or VLPs alone, after only two doses without adjuvant. These findings demonstrate that antigens that require a free N-terminus for optimal antigen display can now be used with the RIC system, and that plant-made RICs and VLPs are highly effective vaccines targeting ZE3. Thus, the RIC platform can be more generally applied to a wider variety of antigens.


Assuntos
Vacinas de Partículas Semelhantes a Vírus , Infecção por Zika virus , Zika virus , Anticorpos Neutralizantes , Anticorpos Antivirais , Complexo Antígeno-Anticorpo , Feminino , Humanos , Gravidez , Envelope Viral , Zika virus/genética , Infecção por Zika virus/prevenção & controle
14.
J Gen Virol ; 100(6): 1038-1051, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31107197

RESUMO

Geminiviruses are a group of small plant viruses responsible for devastating crop damage worldwide. The emergence of agricultural diseases caused by geminiviruses is attributed in part to their high rates of recombination, leading to complementary function between viral components across species and genera. We have developed a mastreviral reporter system based on bean yellow dwarf virus (BeYDV) that replicates to high levels in the plant nucleus, expressing very high levels of GFP. To investigate the potential for complementation of movement function by other geminivirus genera, the movement protein (MP) and nuclear shuttle protein (NSP) from the bipartite begomovirus Bean dwarf mosaic virus (BDMV) were produced and characterized in Nicotiana benthamiana leaves. While overexpression of MP and NSP strongly inhibited GFP expression from the mastreviral reporter and caused adverse plant symptoms, optimizing the expression levels of MP and NSP allowed functional cell-to-cell movement. Hybrid virus vectors were created that express BDMV MP and NSP from mastreviral replicons, allowing efficient cell-to-cell movement comparable to native BDMV replicons. We find that the expression levels of MP and NSP must be fine-tuned to provide sufficient MP/NSP for movement without eliciting the plant hypersensitive response or adversely impacting gene expression from viral replicons. The ability to confer cell-to-cell movement to mastrevirus replicons depended strongly on replicon size: 2.1-2.7 kb replicons were efficiently moved, while 3 kb replicons were inhibited, and 3.9 kb replicons were very strongly inhibited. Optimized expression of MP/NSP from the normally phloem-limited Abutilon mosaic virus (AbMV) allows efficient movement in non-phloem cells.


Assuntos
Begomovirus/genética , Movimento Celular/genética , Nicotiana/virologia , Proteínas Nucleares/genética , Folhas de Planta/virologia , Transporte Biológico/genética , Núcleo Celular/genética , Proteínas do Movimento Viral em Plantas/genética , Replicon/genética
15.
PeerJ ; 7: e6600, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30944775

RESUMO

BACKGROUND: Necrotic enteritis (NE) is caused by type A strains of the bacterium Clostridium perfringens. Total global economic losses to the poultry industry due to NE is estimated to be over two billion dollars annually. Traditionally, NE has been effectively controlled by inclusion of antibiotics in the diet of poultry. However, recent concerns regarding the impact of this practice on increasing antibiotic resistance in human pathogens have led us to consider alternative approaches, such as vaccination, for controlling this disease. NE strains of C. perfringens produce two major toxins, a-toxin and NetB. Immune responses against either toxin can provide partial protection against NE. METHODS: We have developed a fusion protein combining a non-toxic carboxyl-terminal domain of a-toxin (PlcC) and an attenuated, mutant form of NetB (NetB-W262A) for use as a vaccine antigen to immunize poultry against NE. We utilized a DNA sequence that was codon-optimized for Nicotiana benthamiana to enable high levels of expression. The 6-His tagged PlcC-NetB fusion protein was synthesized in N. benthamiana using a geminiviral replicon transient expression system, purified by metal affinity chromatography, and used to immunize broiler birds. RESULTS: Immunized birds produced a strong serum IgY response against both the plant produced PlcC-NetB protein and against bacterially produced His-PlcC and His-NetB. Immunized birds were significantly protected against a subsequent in-feed challenge with virulent C. perfringens when treated with the fusion protein. These results indicate that a plant-produced PlcC-NetB toxoid is a promising vaccine candidate for controlling NE in poultry.

16.
Vaccine ; 37(1): 137-144, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30459071

RESUMO

Diverse HPV subtypes are responsible for considerable disease burden worldwide, necessitating safe, cheap, and effective vaccines. The HPV minor capsid protein L2 is a promising candidate to create broadly protective HPV vaccines, though it is poorly immunogenic by itself. To create highly immunogenic and safe vaccine candidates targeting L2, we employed a plant-based recombinant protein expression system to produce two different vaccine candidates: L2 displayed on the surface of hepatitis B core (HBc) virus-like particles (VLPs) or L2 genetically fused to an immunoglobulin capable of forming recombinant immune complexes (RIC). Both vaccine candidates were potently immunogenic in mice, but were especially so when delivered together, generating very consistent and high antibody titers directed against HPV L2 (>1,000,000) that correlated with virus neutralization. These data indicate a novel immune response synergy upon co-delivery of VLP and RIC platforms, a strategy that can be adapted generally for many different antigens.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Proteínas do Capsídeo/imunologia , Imunogenicidade da Vacina , Proteínas Oncogênicas Virais/imunologia , Vacinas contra Papillomavirus/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Complexo Antígeno-Anticorpo/genética , Antígenos Virais/imunologia , Proteínas do Capsídeo/genética , Feminino , Vetores Genéticos , Vírus da Hepatite B/genética , Camundongos Endogâmicos BALB C , Testes de Neutralização , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/genética , Proteínas Recombinantes/imunologia , Nicotiana/genética , Vacinas de Partículas Semelhantes a Vírus/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-32010680

RESUMO

Biopharmaceuticals are a large and fast-growing sector of the total pharmaceutical market with antibody-based therapeutics accounting for over 100 billion USD in sales yearly. Mammalian cells are traditionally used for monoclonal antibody production, however plant-based expression systems have significant advantages. In this work, we showcase recent advances made in plant transient expression systems using optimized geminiviral vectors that can efficiently produce heteromultimeric proteins. Two, three, or four fluorescent proteins were coexpressed simultaneously, reaching high yields of 3-5 g/kg leaf fresh weight or ~50% total soluble protein. As a proof-of-concept for this system, various antibodies were produced using the optimized vectors with special focus given to the creation and production of a chimeric broadly neutralizing anti-flavivirus antibody. The variable regions of this murine antibody, 2A10G6, were codon optimized and fused to a human IgG1. Analysis of the chimeric antibody showed that it was efficiently expressed in plants at 1.5 g of antibody/kilogram of leaf tissue, can be purified to near homogeneity by a simple one-step purification process, retains its ability to recognize the Zika virus envelope protein, and potently neutralizes Zika virus. Two other monoclonal antibodies were produced at similar levels (1.2-1.4 g/kg). This technology will be a versatile tool for the production of a wide spectrum of pharmaceutical multi-protein complexes in a fast, powerful, and cost-effective way.

18.
Protein Expr Purif ; 151: 86-92, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29908914

RESUMO

Recombinant virus-like particles (VLPs) are proven to be safe and effective vaccine candidates. We have previously described a plant-based recombinant protein expression system based on agroinfiltration of a replicating vector derived from the geminivirus bean yellow dwarf virus (BeYDV). The system has been systematically optimized to improve expression and reduce cell death in Nicotiana benthamiana leaves. Using these modifications, we show that VLPs derived from genotype GII.4 norovirus, the leading cause of acute gastroenteritis worldwide, can be produced at >1 mg/g leaf fresh weight (LFW), over three times the highest level ever reported in plant-based systems. We also produced norovirus GI VLPs at 2.3 mg/g LFW. Treatment of VLP-containing crude leaf extracts with acid, detergent, or heat enhanced recovery and allowed selective enrichment of norovirus VLPs. Optimal treatment conditions allowed removal of >90% of endogenous plant proteins without any loss of norovirus VLPs. Selective enrichment of hepatitis B core antigen (HBcAg) VLPs by acid treatment was also demonstrated, with some losses in yield that were partially mitigated in the presence of detergent. Sedimentation analysis confirmed that acid and detergent did not inhibit proper assembly of norovirus VLPs, although heat treatment had a small negative effect. These results demonstrate that milligram quantities of norovirus VLPs can be obtained and highly enriched in a matter of days from a single plant leaf using the BeYDV plant expression system.


Assuntos
Geminiviridae/genética , Norovirus/genética , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Capsídeo/metabolismo , Vetores Genéticos , Antígenos do Núcleo do Vírus da Hepatite B/genética , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Vacinas de Partículas Semelhantes a Vírus/genética
19.
Plant Biotechnol J ; 16(12): 1971-1982, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29637682

RESUMO

Plants represent a promising platform for the highly scalable production of recombinant proteins. Previously, we identified the tobacco extensin terminator lacking its intron as an element that reduced transcript read-through and improved recombinant protein production in a plant-based system. In this study, we systematically compared nonreplicating plant expression vectors containing over 20 commonly used or newly identified terminators from diverse sources. We found that eight gene terminators enhance reporter gene expression significantly more than the commonly used 35S and NOS terminators. The intronless extensin terminator provided a 13.6-fold increase compared with the NOS terminator. Combining terminators in tandem produced large synergistic effects, with many combinations providing a >25-fold increase in expression. Addition of the tobacco Rb7 or TM6 matrix attachment region (MAR) strongly enhanced protein production when added to most terminators, with the Rb7 MAR providing the greatest enhancement. Using deletion analysis, the full activity of the 1193 bp Rb7 MAR was found to require only a 463-bp region at its 3' end. Combined terminators and MAR together provided a >60-fold increase compared with the NOS terminator alone. These combinations were then placed in a replicating geminiviral vector, providing a total of >150-fold enhancement over the original NOS vector, corresponding to an estimated yield of 3-5 g recombinant protein per kg leaf fresh weight or around 50% of the leaf total soluble protein. These results demonstrate the importance of 3' flanking regions in optimizing gene expression and show great potential for 3' flanking regions to improve DNA-based recombinant protein production systems.


Assuntos
Região 3'-Flanqueadora/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas Recombinantes/biossíntese , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes/genética , Regiões Terminadoras Genéticas/genética , Nicotiana/genética
20.
Sci Rep ; 8(1): 4755, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29555968

RESUMO

An efficient and high yielding expression system is required to produce recombinant proteins. Furthermore, the transient expression system can be used to identify the localization of proteins in plant cells. In this study, we demonstrated that combination of a geminiviral replication and a double terminator dramatically enhanced the transient protein expression level in plants. The GFP protein was expressed transiently in lettuce, Nicotiana benthamiana, tomatoes, eggplants, hot peppers, melons, and orchids with agroinfiltration. Compared to a single terminator, a double terminator enhanced the expression level. A heat shock protein terminator combined with an extensin terminator resulted in the highest protein expression. Transiently expressed GFP was confirmed by immunoblot analysis with anti-GFP antibodies. Quantitative analysis revealed that the geminiviral vector with a double terminator resulted in the expression of at least 3.7 mg/g fresh weight of GFP in Nicotiana benthamiana, approximately 2-fold that of the geminiviral vector with a single terminator. These results indicated that combination of the geminiviral replication and a double terminator is a useful tool for transient expression of the gene of interest in plant cells.


Assuntos
Engenharia Genética/métodos , Plantas/genética , Proteínas Recombinantes/genética , Expressão Gênica , Vetores Genéticos/genética , Proteínas Recombinantes/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...