Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11702, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474630

RESUMO

Ultraviolet radiation (UVR) induces immunosuppression and DNA damage, both of which contribute to the rising global incidence of skin cancer including melanoma. Nucleotide excision repair, which is activated upon UVR-induced DNA damage, is linked to expression of interleukin-12 (IL-12) which serves to limit immunosuppression and augment the DNA repair process. Herein, we report an immunomodulating peptide, designated IK14800, that not only elicits secretion of IL-12, interleukin-2 (IL-2) and interferon-gamma (IFN-γ) but also reduces DNA damage in the skin following exposure to UVR. Combined with re-invigoration of exhausted CD4+ T cells, inhibition of UVR-induced MMP-1 release and suppression of B16F10 melanoma metastases, IK14800 offers an opportunity to gain further insight into mechanisms underlying the development and progression of skin cancers.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Raios Ultravioleta/efeitos adversos , Terapia de Imunossupressão/efeitos adversos , Dano ao DNA , Reparo do DNA , Melanoma/etiologia , Interleucina-12 , Neoplasias Cutâneas/complicações
2.
Metabolites ; 13(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37512482

RESUMO

The hormonal form of vitamin D3, 1,25(OH)2D3, reduces UV-induced DNA damage. UV exposure initiates pre-vitamin D3 production in the skin, and continued UV exposure photoisomerizes pre-vitamin D3 to produce "over-irradiation products" such as lumisterol3 (L3). Cytochrome P450 side-chain cleavage enzyme (CYP11A1) in skin catalyzes the conversion of L3 to produce three main derivatives: 24-hydroxy-L3 [24(OH)L3], 22-hydroxy-L3 [22(OH)L3], and 20,22-dihydroxy-L3 [20,22(OH)L3]. The current study investigated the photoprotective properties of the major over-irradiation metabolite, 24(OH)L3, in human primary keratinocytes and human skin explants. The results indicated that treatment immediately after UV with either 24(OH)L3 or 1,25(OH)2D3 reduced UV-induced cyclobutane pyrimidine dimers and oxidative DNA damage, with similar concentration response curves in keratinocytes, although in skin explants, 1,25(OH)2D3 was more potent. The reductions in DNA damage by both compounds were, at least in part, the result of increased DNA repair through increased energy availability via increased glycolysis, as well as increased DNA damage recognition proteins in the nucleotide excision repair pathway. Reductions in UV-induced DNA photolesions by either compound occurred in the presence of lower reactive oxygen species. The results indicated that under in vitro and ex vivo conditions, 24(OH)L3 provided photoprotection against UV damage similar to that of 1,25(OH)2D3.

3.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902353

RESUMO

The calcium-sensing receptor (CaSR) is an important regulator of epidermal function. We previously reported that knockdown of the CaSR or treatment with its negative allosteric modulator, NPS-2143, significantly reduced UV-induced DNA damage, a key factor in skin cancer development. We subsequently wanted to test whether topical NPS-2143 could also reduce UV-DNA damage, immune suppression, or skin tumour development in mice. In this study, topical application of NPS-2143 (228 or 2280 pmol/cm2) to Skh:hr1 female mice reduced UV-induced cyclobutane pyrimidine dimers (CPD) (p < 0.05) and oxidative DNA damage (8-OHdG) (p < 0.05) to a similar extent as the known photoprotective agent 1,25(OH)2 vitamin D3 (calcitriol, 1,25D). Topical NPS-2143 failed to rescue UV-induced immunosuppression in a contact hypersensitivity study. In a chronic UV photocarcinogenesis protocol, topical NPS-2143 reduced squamous cell carcinomas for only up to 24 weeks (p < 0.02) but had no other effect on skin tumour development. In human keratinocytes, 1,25D, which protected mice from UV-induced skin tumours, significantly reduced UV-upregulated p-CREB expression (p < 0.01), a potential early anti-tumour marker, while NPS-2143 had no effect. This result, together with the failure to reduce UV-induced immunosuppression, may explain why the reduction in UV-DNA damage in mice with NPS-2143 was not sufficient to inhibit skin tumour formation.


Assuntos
Receptores de Detecção de Cálcio , Neoplasias Cutâneas , Feminino , Animais , Camundongos , Humanos , Camundongos Pelados , Receptores de Detecção de Cálcio/metabolismo , Raios Ultravioleta , Dano ao DNA , Neoplasias Cutâneas/metabolismo , Dímeros de Pirimidina/metabolismo , Pele/metabolismo
4.
Photochem Photobiol ; 98(5): 1157-1166, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35288938

RESUMO

The epidermis maintains a cellular calcium gradient that supports keratinocyte differentiation from its basal layers (low) to outer layers (high) leading to the development of the stratum corneum, which resists penetration of UV radiation. The calcium-sensing receptor (CaSR) expressed in keratinocytes responds to the calcium gradient with signals that promote differentiation. In this study, we investigated whether the CaSR is involved more directly in protection from UV damage in studies of human keratinocytes in primary culture and in mouse skin studied in vivo. siRNA-directed reductions in CaSR protein levels in human keratinocytes significantly reduced UV-induced direct cyclobutane pyrimidine dimers (CPD) by ~80% and oxidative DNA damage (8-OHdG) by ~65% compared with control transfected cells. Similarly, in untransfected cells, the CaSR negative modulator, NPS-2143 (500 nm), reduced UV-induced CPD and 8-OHdG by ~70%. NPS-2143 also enhanced DNA repair and reduced reactive oxygen species (ROS) by ~35% in UV-exposed keratinocytes, consistent with reduced DNA damage after UV exposure. Topical application of NPS-2143 also protected hairless Skh:hr1 mice from UV-induced CPD, oxidative DNA damage and inflammation, similar to the reductions observed in response to the well-known photoprotection agent 1,25(OH)2 D3 (calcitriol). Thus, negative modulators of the CaSR offer a new approach to reducing UV-induced skin damage.


Assuntos
Dímeros de Pirimidina , Raios Ultravioleta , 8-Hidroxi-2'-Desoxiguanosina , Animais , Calcitriol/metabolismo , Calcitriol/farmacologia , Cálcio/metabolismo , Dano ao DNA , Humanos , Queratinócitos/metabolismo , Camundongos , Dímeros de Pirimidina/metabolismo , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Pele/metabolismo , Raios Ultravioleta/efeitos adversos
5.
JBMR Plus ; 5(12): e10555, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34950826

RESUMO

The vitamin D hormone, 1,25dihydroxyvitamin D3 (1,25(OH)2D3), and related compounds derived from vitamin D3 or lumisterol as a result of metabolism via the enzyme CYP11A1, have been shown, when applied 24 hours before or immediately after UV irradiation, to protect human skin cells and skin from DNA damage due to UV exposure, by reducing both cyclobutane pyrimidine dimers (CPD) and oxidative damage in the form of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG). We now report that knockdown of either the vitamin D receptor or the endoplasmic reticulum protein ERp57 by small, interfering RNA (siRNA) abolished the reductions in UV-induced DNA damage with 20-hydroxyvitamin D3 or 24-hydroxylumisterol3, as previously shown for 1,25(OH)2D3. Treatment with 1,25(OH)2D3 reduced oxygen consumption rates in UV-exposed and sham-exposed human keratinocytes and reduced phosphorylation of cyclic AMP response binding element protein (CREB). Both these actions have been shown to inhibit skin carcinogenesis after chronic UV exposure, consistent with the anticarcinogenic activity of 1,25(OH)2D3. The requirement for a vitamin D receptor for the photoprotective actions of 1,25(OH)2D3 and of naturally occurring CYP11A1-derived vitamin D-related compounds may explain why mice lacking the vitamin D receptor in skin are more susceptible to UV-induced skin cancers, whereas mice lacking the 1α-hydroxylase and thus unable to make 1,25(OH)2D3 are not more susceptible. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

6.
J Invest Dermatol ; 138(5): 1146-1156, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29258892

RESUMO

Inadequately repaired post-UV DNA damage results in skin cancers. DNA repair requires energy but skin cells have limited capacity to produce energy after UV insult. We examined whether energy supply is important for DNA repair after UV exposure, in the presence of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), which reduces UV-induced DNA damage and photocarcinogenesis in a variety of models. After UV exposure of primary human keratinocytes, the addition of 1,25(OH)2D3 increased unscheduled DNA synthesis, a measure of DNA repair. Oxidative phosphorylation was depleted in UV-irradiated keratinocytes to undetectable levels within an hour of UV irradiation. Treatment with 1,25(OH)2D3 but not vehicle increased glycolysis after UV. 2-Deoxyglucose-dependent inhibition of glycolysis abolished the reduction in cyclobutane pyrimidine dimers by 1,25(OH)2D3, whereas inhibition of oxidative phosphorylation had no effect. 1,25(OH)2D3 increased autophagy and modulated PINK1/Parkin consistent with enhanced mitophagy. These data confirm that energy availability is limited in keratinocytes after exposure to UV. In the presence of 1,25(OH)2D3, glycolysis is enhanced along with energy-conserving processes such as autophagy and mitophagy, resulting in increased repair of cyclobutane pyrimidine dimers and decreased oxidative DNA damage. Increased energy availability in the presence of 1,25(OH)2D3 is an important contributor to DNA repair in skin after UV exposure.


Assuntos
Reparo do DNA/efeitos dos fármacos , Pele/efeitos da radiação , Vitamina D/análogos & derivados , Autofagia/efeitos da radiação , Células Cultivadas , Dano ao DNA , Quinase 3 da Glicogênio Sintase/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/metabolismo , Raios Ultravioleta , Vitamina D/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...