Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(13): 137701, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36206432

RESUMO

The metal-oxide-semiconductor (MOS) capacitor is one of the fundamental electrical components used in integrated circuits. While much effort is currently being made to integrate new dielectric or ferroelectric materials, capacitors of silicon dioxide on silicon remain the most prevalent. It is perhaps surprising therefore that the electric field within such a capacitor has never been measured, or mapped out, at the nanoscale. Here we present results from operando electron holography experiments showing the electric potential across a working MOS nanocapacitor with unprecedented sensitivity and reveal unexpected charging of the dielectric material bordering the electrodes.

2.
Nanoscale ; 12(33): 17312-17318, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32789322

RESUMO

The fabrication of multi-gigabit magnetic random access memory (MRAM) chips requires the patterning of magnetic tunnel junctions at very small dimensions (sub-30 nm) and a very dense pitch. This remains a challenge due to the difficulty in etching magnetic tunnel junction stacks. We previously proposed a strategy to circumvent this problem by depositing the magnetic tunnel junction material on prepatterned metallic pillars, resulting in the junction being naturally shaped during deposition. Upon electrical contact, the deposit on top of the pillars constitutes the magnetic storage element of the memory cell. However, in this process, the magnetic material is also deposited in the trenches between the pillars that might affect the memory cell behaviour. Here we study the magnetic interactions between the deposit on top of the pillars and in the trenches by electron holography, at room temperature and up to 325 °C. Supported by models, we show that the additional material in the trenches is not perturbing the working principle of the memory chip and can even play the role of a flux absorber which reduces the crosstalk between neighboring dots. Besides, in the studied sample, the magnetization of the 1.4 nm thick storage layer of the dots is found to switch from out-of-plane to an in-plane configuration above 125 °C, but gradually decreases with temperature. Electron holography is shown to constitute a very efficient tool for characterizing the micromagnetic configuration of the storage layer in MRAM cells.

3.
Ultramicroscopy ; 164: 24-30, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26998702

RESUMO

One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.

4.
Ultramicroscopy ; 151: 107-115, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25522868

RESUMO

A newly developed carbon cone nanotip (CCnT) has been used as field emission cathode both in low voltage SEM (30 kV) electron source and high voltage TEM (200 kV) electron source. The results clearly show, for both technologies, an unprecedented stability of the emission and the probe current with almost no decay during 1h, as well as a very small noise (rms less than 0.5%) compared to standard sources which use tungsten tips as emitting cathode. In addition, quantitative electric field mapping around the FE tip have been performed using in situ electron holography experiments during the emission of the new tip. These results show the advantage of the very high aspect ratio of the new CCnT which induces a strong enhancement of the electric field at the apex of the tip, leading to very small extraction voltage (some hundred of volts) for which the field emission will start. The combination of these experiments with emission current measurements has also allowed to extract an exit work function value of 4.8 eV.

5.
Ultramicroscopy ; 159 Pt 2: 152-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25498140

RESUMO

We present the first demonstration of ultrafast laser-induced field emission and measurement of the energy distribution of electrons from a nanotip based on a carbon nanotube (CNT). Our experimental setup extends the studies performed on conventional tungsten or gold tips by using this new innovative tip. The carbon tip consists of concentric carbon layers in the shape of a cone, and has been previously studied as a very good candidate for cold field emission. The first laser-induced field emission from a CNT-based nanotip has been observed and we measured the energy spectrum as well as the polarization dependance of the emission. We also characterize the damage threshold of the tip, when illuminated by a high repetition rate femtosecond laser. These first results are encouraging further studies of electron emission from CNT-based carbon nanotips.

6.
J Phys Condens Matter ; 25(49): 496002, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24184960

RESUMO

We develop the self-assembly of epitaxial submicrometer-sized face-centered-cubic (fcc) Co(111) dots using pulsed laser deposition. The dots display atomically flat facets, from which the ratios of surface and interface energies for fcc Co are deduced. Zero-field magnetic structures are investigated with magnetic force and Lorentz microscopies, revealing vortex-based flux-closure patterns. A good agreement is found with micromagnetic simulations.

7.
Phys Rev Lett ; 104(12): 127204, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366562

RESUMO

Dimensionality crossover is a classical topic in physics. Surprisingly, it has not been searched in micromagnetism, which deals with objects such as domain walls (2D) and vortices (1D). We predict by simulation a second-order transition between these two objects, with the wall length as the Landau parameter. This was confirmed experimentally based on micron-sized flux-closure dots.

8.
Phys Rev Lett ; 102(10): 107201, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19392153

RESUMO

While magnetic hysteresis usually considers magnetic domains, the switching of the core of magnetic vortices has recently become an active topic. We considered Bloch domain walls, which are known to display at the surface of thin films flux-closure features called Néel caps. We demonstrated the controlled switching of these caps under a magnetic field, occurring via the propagation of a surface vortex. For this we considered flux-closure states in elongated micron-sized dots, so that only the central domain wall can be addressed, while domains remain unaffected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA