Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 70(5): 349-355, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32096241

RESUMO

The honey bee has long been known to be a bioindicator of environmental pollution and the use of antimicrobials in the beekeeping industry is strictly regulated. For these reasons, this paper was aimed to evaluate for the first time the role of Apis mellifera as a possible indicator of environmental antimicrobial resistance (AMR). The study isolated and analysed the resistance patterns of Enterobacteriaceae from a pool of honey bee guts located in five different environmental sites (ES), where different antimicrobial selective pressures were hypothesized. In all, 48 isolates were considered for identification and underwent analyses of AMR to ampicillin, amoxicillin/clavulanic acid, cefazolin, ceftazidime, tetracycline, imipenem, enrofloxacin, amikacin and trimethoprim/sulfamethoxazole. In all, 12 isolates out of 48 (25%) showed resistance to at least one antimicrobial drug. There were no significant differences between the resistance rates observed in the ESs, even if the highest percentage of resistance was found in ES4. Resistances to amoxicillin/clavulanic acid resulted significantly higher than those detected towards the other antimicrobials. Amoxicillin/clavulanic acid is not commonly used in beekeeping but it is extensively used in animals and in humans, suggesting an environmental origin of this resistance and supporting the hypothesis that honey bees could be used as indicators of AMR spread in the environment. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, a possible role of honey bees as indicator of environmental antimicrobial resistance is hypothesized. Enterobacteriaceae were isolated from bees living in different environmental sites (ES) where different antimicrobial selective pressures were hypothesized. Even if no differences between the resistances in the five ES were observed, the resistance rates for amoxicillin/clavulanic acid, compared to other antimicrobials, were significantly higher. Since amoxicillin/clavulanic acid is not used in beekeeping but it is extensively used in animals and in humans, an environmental origin of this resistance is suggested that supports our hypothesis.


Assuntos
Antibacterianos/farmacologia , Abelhas/microbiologia , Farmacorresistência Bacteriana , Enterobacteriaceae/efeitos dos fármacos , Amoxicilina/farmacologia , Animais , Criação de Abelhas , Ácido Clavulânico/farmacologia , Meio Ambiente , Microbiota , Espécies Sentinelas/microbiologia
2.
J Appl Microbiol ; 122(4): 1071-1077, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28106302

RESUMO

AIMS: This comparative study investigated the occurrence of cadF, cj1349, ciaB, pldA, tlyA, hecA, hecB, mviN, irgA and IroE genes in 212 Arcobacter butzleri isolated from three different environmental sites linked to the dairy chain (farms, industrial and artisanal dairy plants) located in three Italian regions (Lombardy, Emilia-Romagna and Calabria). METHODS AND RESULTS: According to the presence of these genes, different pathotypes (P-types) were determined. The main genes detected were ciaB, mviN, tlyA, cj1349, pldA and cadF, while the least common genes were iroE, hecA, hecB and irgA. TlyA, irgA, hecA, hecB and iroE, which were significantly more frequent in isolates recovered in industrial dairy plants. Twelve P-types were detected. The occurrence of the most frequently detected P-types (P-types 1, 2, 3 and 5) differed significantly (P < 0·001) in relation to both the environmental site and geographical area of isolation. The highest diversity in P-types was observed in industrial dairy plants and in the Calabria region. CONCLUSIONS: The results of this study show a correlation between the occurrence of putative virulence genes and virulence genotype variability depending on the environmental site and geographical origin of the isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study provides insights into the similar distribution of putative virulence genes in a dairy chain and other sources' isolates and also into a geographical distribution of some P-types. We have shown that industrial dairy plants may represent an environmental site favouring a selection of the isolates with a higher pathogenetic pattern.


Assuntos
Arcobacter/patogenicidade , Indústria de Laticínios , Microbiologia Ambiental , Animais , Arcobacter/genética , Arcobacter/isolamento & purificação , Genes Bacterianos , Genótipo , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA