Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18237, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880240

RESUMO

Norbin is an adaptor protein that binds numerous G protein-coupled receptors (GPCRs), is highly expressed in neurons, and is essential for a functioning nervous system in rodent models. Yet, beyond its control of neurite outgrowth and synaptic plasticity, few cellular roles of Norbin have been investigated to date. Furthermore, while Norbin is known to regulate the steady-state cell surface levels of several GPCRs, only in one case has the protein been shown to control the agonist-induced receptor internalisation which serves to attenuate GPCR signalling. Here, we generated a Norbin-deficient PC12 cell line which enabled us to study both the cellular functions of Norbin and its roles in GPCR trafficking and signalling. We show that Norbin limits cell size and spreading, and is required for the growth, viability and cell cycle progression of PC12 cells. We also found that Norbin regulates both the steady-state surface level and agonist-induced internalisation of the GPCR sphingosine-1-phosphate receptor 1 (S1PR1) in these cells, suggesting that its role in agonist-dependent GPCR trafficking is more widespread than previously appreciated. Finally, we show that Norbin limits the S1P-stimulated activation of Akt and p38 Mapk, and is required for the activation of Erk in PC12 cells. Together, our findings provide a better understanding of the cellular functions of Norbin and its control of GPCR trafficking.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Ratos , Ciclo Celular , Células PC12 , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Esfingosina-1-Fosfato , Sobrevivência Celular/genética
2.
Am J Cancer Res ; 12(5): 2293-2309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693081

RESUMO

V158411 is a potent, selective Chk1 inhibitor currently in pre-clinical development. We utilised RNA-sequencing to evaluate the gene responses to V158411 treatment. BCL2A1 was highly upregulated in U2OS cells in response to V158411 treatment with BCL2A1 mRNA increased > 400-fold in U2OS but not HT29 cells. Inhibitors of Chk1, Wee1 and topoisomerases but not other DNA damaging agents or inhibitors of ATR, ATM or DNA-PKcs increased BFL1 and decreased BIM protein. Increased BFL1 appeared limited to a subset of approximately 35% of U2OS cells. Out of 24 cell lines studied, U2OS cells were unique in being the only cell line with low basal BFL1 levels to be increased in response to DNA damage. Induction of BFL1 in U2OS cells appeared dependent on PI3K/AKT/mTOR/MEK pathway signalling but independent of NF-κB transcription factors. Inhibitors of MEK, mTOR and PI3K effectively blocked the increase in BFL1 following V15841 treatment. Increased BFL1 expression did not block apoptosis in U2OS cells in response to V158411 treatment and cells with high basal expression of BFL1 readily underwent caspase-dependent apoptosis following Chk1 inhibitor therapy. BFL1 induction in response to Chk1 inhibition appeared to be a rare event that was dependent on MEK/PI3K/AKT/mTOR signalling.

3.
J Cell Mol Med ; 25(22): 10650-10662, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34708541

RESUMO

The dual-specificity tyrosine-regulated kinases DYRK1A and DYRK1B play a key role in controlling the quiescence-proliferation switch in cancer cells. Serum reduction of U87MG 2D cultures or multi-cellular tumour spheroids induced a quiescent like state characterized by increased DYRK1B and p27, and decreased pRb and cyclin D1. VER-239353 is a potent, selective inhibitor of the DYRK1A and DYRK1B kinases identified through fragment and structure-guided drug discovery. Inhibition of DYRK1A/B by VER-239353 in quiescent U87MG cells increased pRb, DYRK1B and cyclin D1 but also increased the cell cycle inhibitors p21 and p27. This resulted in exit from G0 but subsequent arrest in G1. DYRK1A/B inhibition reduced the proliferation of U87MG cells in 2D and 3D culture with greater effects observed under reduced serum conditions. Paradoxically, the induced re-expression of cell cycle proteins by DYRK1A/B inhibition further inhibited cell proliferation. Cell growth arrest induced in quiescent cells by DYRK1A/B inhibition was reversible through the addition of growth-promoting factors. DYRK inhibition-induced DNA damage and synergized with a CHK1 inhibitor in the U87MG spheroids. In vivo, DYRK1A/B inhibition-induced tumour stasis in a U87MG tumour xenograft model. These results suggest that further evaluation of VER-239353 as a treatment for glioblastoma is therefore warranted.


Assuntos
Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Glioblastoma/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/etiologia , Glioblastoma/patologia , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Quinases Dyrk
4.
J Med Chem ; 64(13): 8971-8991, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34143631

RESUMO

The serine/threonine kinase DYRK1A has been implicated in regulation of a variety of cellular processes associated with cancer progression, including cell cycle control, DNA damage repair, protection from apoptosis, cell differentiation, and metastasis. In addition, elevated-level DYRK1A activity has been associated with increased severity of symptoms in Down's syndrome. A selective inhibitor of DYRK1A could therefore be of therapeutic benefit. We have used fragment and structure-based discovery methods to identify a highly selective, well-tolerated, brain-penetrant DYRK1A inhibitor which showed in vivo activity in a tumor model. The inhibitor provides a useful tool compound for further exploration of the effect of DYRK1A inhibition in models of disease.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Quinases Dyrk
5.
J Med Chem ; 64(10): 6745-6764, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33975430

RESUMO

The kinase DYRK1A is an attractive target for drug discovery programs due to its implication in multiple diseases. Through a fragment screen, we identified a simple biaryl compound that is bound to the DYRK1A ATP site with very high efficiency, although with limited selectivity. Structure-guided optimization cycles enabled us to convert this fragment hit into potent and selective DYRK1A inhibitors. Exploiting the structural differences in DYRK1A and its close homologue DYRK2, we were able to fine-tune the selectivity of our inhibitors. Our best compounds potently inhibited DYRK1A in the cell culture and in vivo and demonstrated drug-like properties. The inhibition of DYRK1A in vivo translated into dose-dependent tumor growth inhibition in a model of ovarian carcinoma.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Fosforilação/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Relação Estrutura-Atividade , Quinases Dyrk
6.
DNA Repair (Amst) ; 101: 103099, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33740539

RESUMO

Inhibitors of Chk1 kinase, a key effector of the DNA damage response pathway, are currently undergoing Phase 1 and 2 clinical trials as single agents and in combination with cytotoxic chemotherapy. Understanding the biological effects of Chk1 inhibitors on cancer cells is critical for their continued clinical development. Treatment of adherent HT29 or HCC1937 cancer cells or suspension Jurkat or THP1 cells with a Chk1 inhibitor increased γH2AX in these cells. Chk1i pre-treated HCC1937 or HT29 cells resulted in γH2AX induction in cocultured Jurkat or THP1 cells despite these cells never being treated with a Chk1i. Pre-treatment of HT29 cells with camptothecin or gemcitabine followed by a Chk1i increased the DNA damage bystander effect in naïve cocultured THP1 cells compared to camptothecin or gemcitabine alone. This bystander effect appeared to occur through soluble factors via ATR, ATM, and DNA-PKcs activation in the bystander cells. Chk1 silencing by siRNA in HCC1937 or HT29 cells induced a DNA damage bystander effect in cocultured THP1 cells. However, this bystander effect induced by siRNA appeared mechanistically different to that induced by the Chk1 inhibitor. This work suggests that a Chk1 inhibitor-induced bystander effect may increase the clinical effectiveness of Chk1 inhibitors by inducing additional DNA damage or replication stress in cancer cells not directly exposed to the inhibitor. Conversely, it may also contribute to Chk1 inhibitor toxicity by increasing DNA damage in non-tumour cells.


Assuntos
Efeito Espectador , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Dano ao DNA , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Camptotecina/farmacologia , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/metabolismo , Técnicas de Cocultura , DNA/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Células HT29 , Histonas/análise , Histonas/metabolismo , Humanos , Células Jurkat , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Inibidores de Proteínas Quinases/uso terapêutico , Gencitabina
7.
FEBS J ; 288(15): 4507-4540, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33529438

RESUMO

Activating stimulator of interferon genes to turn immunologically refractive cold tumor hot is an exciting therapeutic approach to increase the clinical responsiveness of some human cancers to immune checkpoint inhibitors. DNA damaging drugs and PARP inhibitors are two types of agents that have demonstrated this potential. Inhibitors of Chk1 or Wee1 induce DNA damage in cancer cells in predominantly the S-phase population. Increased cytoplasmic single-stranded and double-stranded DNA (dsDNA) from this DNA damage resulted in increased tank-binding kinase 1 (TBK1) phosphorylation in a range of cancer cell lines. However, despite robust increases in pTBK1, no downstream consequences of TBK1 phosphorylation were observed (namely no increase in pIRF3/7, interferon regulatory factor (IRF)-dependent gene expression or a type I IFN response). In combination with cytotoxic chemotherapy such as gemcitabine or camptothecin (CPT), Chk1 inhibition increased cytoplasmic dsDNA compared with the cytotoxic alone but attenuated the cytotoxic chemotherapy-induced increase in IRF1 protein and STAT1 phosphorylation through inhibition of nuclear RelB translocation. Despite increased cytoplasmic DNA and TBK1 activation, inhibition of Chk1, ataxia telangiectasia and Rad3-related protein, or Wee1 failed to activate a type I IFN response. We discuss the potential underlying mechanisms for this lack of IRF-dependent gene response and how this might influence the clinical strategies of combining Chk1 or Wee1 inhibitors with immune checkpoint inhibitors.


Assuntos
Dano ao DNA , Inibidores de Checkpoint Imunológico/toxicidade , Imunidade Inata , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/metabolismo , Células HT29 , Humanos , Fator Regulador 3 de Interferon/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fator de Transcrição STAT1/metabolismo
8.
Mol Biomed ; 2(1): 19, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006469

RESUMO

Utilising Checkpoint Kinase 1 (Chk1) inhibitors to increase cytoplasmic DNA may be a potential strategy to increase the sensitivity of tumours to immune checkpoint modulators. The appearance of DNA in the cytoplasm can drive Cyclic GMP-AMP Synthase-2',3'-Cyclic Guanosine Monophosphate-Adenosine Monophosphate-Stimulator of Interferon Genes (cGAS-cGAMP-STING) inflammatory, anti-tumour T-cell activity via a type I interferon (IFN) and nuclear factor-κB response. In the THP1-Dual reporter cell line, the STING agonist cGAMP activated both reporters, and increased phosphorylation of the innate immune pathway signallers Tank Binding Kinase 1 (TBK1) and Interferon Regulatory Factor (IRF) 3. Inhibition of Chk1 increased TBK1 but not IRF3 phosphorylation and did not induce IRF or NF-κB reporter activation. cGAMP induced a Type I IFN response in THP1 cells whereas inhibition of Chk1 did not. HT29 or HCC1937 cell treatment with a Chk1 inhibitor increased cytoplasmic dsDNA in treated HCC1937 but not HT29 cells and increased IRF reporter activation in cocultured THP1-Dual cells. HT29 cells pre-treated with gemcitabine or camptothecin had elevated cytoplasmic dsDNA and IRF reporter activation in cocultured THP1-Dual cells. Camptothecin or gemcitabine plus a Chk1 inhibitor increased cytoplasmic dsDNA but Chk1 inhibition suppressed IRF reporter activation in cocultured THP1 cells. In THP1-Dual cells treated with cGAMP, Chk1 inhibition suppressed the activation of the IRF reporter compared to cGAMP alone. These results suggest that, in some cellular models, there is little evidence to support the combination of Chk1 inhibitors with immune checkpoint modulators and, in some combination regimes, may even prove deleterious.

9.
PLoS One ; 13(4): e0195050, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29617433

RESUMO

Determining and understanding drug target engagement is critical for drug discovery. This can be challenging within living cells as selective readouts are often unavailable. Here we describe a novel method for measuring target engagement in living cells based on the principle of altered protein thermal stabilization / destabilization in response to ligand binding. This assay (HCIF-CETSA) utilizes high content, high throughput single cell immunofluorescent detection to determine target protein levels following heating of adherent cells in a 96 well plate format. We have used target engagement of Chk1 by potent small molecule inhibitors to validate the assay. Target engagement measured by this method was subsequently compared to target engagement measured by two alternative methods (autophosphorylation and CETSA). The HCIF-CETSA method appeared robust and a good correlation in target engagement measured by this method and CETSA for the selective Chk1 inhibitor V158411 was observed. However, these EC50 values were 23- and 12-fold greater than the autophosphorylation IC50. The described method is therefore a valuable advance in the CETSA method allowing the high throughput determination of target engagement in adherent cells.


Assuntos
Bioensaio/métodos , Quinase 1 do Ponto de Checagem/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/genética , Células HT29 , Humanos , Hidroxiureia/farmacologia , Indóis/farmacologia , Microscopia de Fluorescência , Fosforilação/efeitos dos fármacos , Piridonas/farmacologia , Temperatura
10.
SLAS Discov ; 23(2): 144-153, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29048945

RESUMO

Understanding drug target engagement and the relationship to downstream pharmacology is critical for drug discovery. Here we have evaluated target engagement of Chk1 by the small-molecule inhibitor V158411 using two different target engagement methods (autophosphorylation and cellular thermal shift assay [CETSA]). Target engagement measured by these methods was subsequently related to Chk1 inhibitor-dependent pharmacology. Inhibition of autophosphorylation was a robust method for measuring V158411 Chk1 target engagement. In comparison, while target engagement determined using CETSA appeared robust, the V158411 CETSA target engagement EC50 values were 43- and 19-fold greater than the autophosphorylation IC50 values. This difference was attributed to the higher cell density in the CETSA assay configuration. pChk1 (S296) IC50 values determined using the CETSA assay conditions were 54- and 33-fold greater than those determined under standard conditions and were equivalent to the CETSA EC50 values. Cellular conditions, especially cell density, influenced the target engagement of V158411 for Chk1. The effects of high cell density on apparent compound target engagement potency should be evaluated when using target engagement assays that necessitate high cell densities (such as the CETSA conditions used in this study). In such cases, the subsequent relation of these data to downstream pharmacological changes should therefore be interpreted with care.


Assuntos
Bioensaio/métodos , Contagem de Células/métodos , Quinase 1 do Ponto de Checagem/metabolismo , Descoberta de Drogas/métodos , Indóis/farmacologia , Piridonas/farmacologia , Linhagem Celular Tumoral , Células HT29 , Humanos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia
11.
J Med Chem ; 60(6): 2271-2286, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28199108

RESUMO

Libraries of nonpurified resorcinol amide derivatives were screened by surface plasmon resonance (SPR) to determine the binding dissociation constant (off-rate, kd) for compounds binding to the pyruvate dehydrogenase kinase (PDHK) enzyme. Parallel off-rate measurements against HSP90 and application of structure-based drug design enabled rapid hit to lead progression in a program to identify pan-isoform ATP-competitive inhibitors of PDHK. Lead optimization identified selective sub-100-nM inhibitors of the enzyme which significantly reduced phosphorylation of the E1α subunit in the PC3 cancer cell line in vitro.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Desenho de Fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Modelos Moleculares , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil
12.
Sci Rep ; 7: 40778, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28106079

RESUMO

Chk1 kinase inhibitors are currently under clinical investigation as potentiators of cytotoxic chemotherapy and demonstrate potent activity in combination with anti-metabolite drugs that increase replication stress through the inhibition of nucleotide or deoxyribonucleotide biosynthesis. Inhibiting other metabolic pathways critical for the supply of building blocks necessary to support DNA replication may lead to increased DNA damage and synergy with an inhibitor of Chk1. A screen of small molecule metabolism modulators identified combinatorial activity between a Chk1 inhibitor and chloroquine or the LDHA/LDHB inhibitor GSK 2837808A. Compounds, such as 2-deoxyglucose or 6-aminonicotinamide, that reduced the fraction of cells undergoing active replication rendered tumour cells more resistant to Chk1 inhibitor-induced DNA damage. Withdrawal of glucose or glutamine induced G1 and G2/M arrest without increasing DNA damage and reduced Chk1 expression and activation through autophosphorylation. This suggests the expression and activation of Chk1 kinase is associated with cells undergoing active DNA replication. Glutamine starvation rendered tumour cells more resistant to Chk1 inhibitor-induced DNA damage and reversal of the glutamine starvation restored the sensitivity of tumour cells to Chk1 inhibitor-induced DNA damage. Chk1 inhibitors may be a potentially useful therapeutic treatment for patients whose tumours contain a high fraction of replicating cells.


Assuntos
Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Aminoquinolinas/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cloroquina/farmacologia , Replicação do DNA , Descoberta de Drogas , Humanos , Sulfonamidas/farmacologia
13.
Oncotarget ; 7(51): 85033-85048, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27829224

RESUMO

Chk1 kinase is a critical component of the DNA damage response checkpoint and Chk1 inhibitors are currently under clinical investigation. Chk1 suppresses oncogene-induced replication stress with Chk1 inhibitors demonstrating activity as a monotherapy in numerous cancer types. Understanding the mechanism by which Chk1 inhibitors induce DNA damage and cancer cell death is essential for their future clinical development. Here we characterize the mechanism by which the novel Chk1 inhibitor (V158411) increased DNA damage and cell death in models of human cancer. V158411 induced a time- and concentration-dependent increase in γH2AX-positive nuclei that was restricted to cells actively undergoing DNA synthesis. γH2AX induction was an early event and correlated with activation of the ATR/ATM/DNA-PKcs DNA damage response pathways. The appearance of γH2AX positive nuclei preceded ssDNA appearance and RPA exhaustion. Complete and sustained inhibition of Chk1 kinase was necessary to activate a robust γH2AX induction and growth inhibition. Chk1 inhibitor cytotoxicity correlated with induction of DNA damage with cells undergoing apoptosis, mitotic slippage and DNA damage-induced permanent cell cycle arrest. We identified two distinct classes of Chk1 inhibitors: those that induced a strong increase in γH2AX, pChk1 (S317) and pRPA32 (S4/S8) (including V158411, LY2603618 and ARRY-1A) and those that did not (including MK-8776 and GNE-900). Tumor cell death, induced through increased DNA damage, coupled with abrogation of cell cycle checkpoints makes selective inhibitors of Chk1 a potentially useful therapeutic treatment for multiple human cancers.


Assuntos
Morte Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/metabolismo , Neoplasias do Colo/metabolismo , Dano ao DNA/efeitos dos fármacos , Indóis/farmacologia , Piridonas/farmacologia , Antineoplásicos/uso terapêutico , Processos de Crescimento Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Histonas/genética , Histonas/metabolismo , Humanos , Indóis/uso terapêutico , Piridonas/uso terapêutico , Fase S
14.
Cancer Lett ; 383(1): 41-52, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693461

RESUMO

The Chk1 and ATR kinases are critical mediators of the DNA damage response pathway and help protect cancer cells from endogenous and oncogene induced replication stress. Inhibitors of both kinases are currently being evaluated in clinical trials. Chk1 inhibition with V158411 increases DNA damage and activates the ATR, ATM and DNA-PKcs dependent DNA damage response pathways. Inhibiting ATR, ATM and/or DNA-PKcs has the potential to increase the therapeutic activity of Chk1 inhibitors. ATR inhibition but not ATM or DNA-PKcs inhibition potentiated the cytotoxicity of V158411 in p53 mutant and wild type human cancer cell lines. This increased cytotoxicity correlated with increased nuclear DNA damage and replication stress in a dose and time dependent manner. γH2AX induction following Chk1 inhibition protected cells from caspase-dependent apoptosis. Inhibition of ATR increased Chk1 inhibitor induced cell death independently of caspase activation. The effect of ATR, ATM and/or DNA-PK inhibition on Chk1 inhibitor induced replication stress was dependent on the concentration of Chk1 inhibitor. ATR inhibition potentiated Chk1 inhibitor induced replication stress and cytotoxicity via the abrogation of ATR-dependent feedback activation of Chk1 induced by Chk1 inhibitor generated replication stress. This study suggests that combining an ATR inhibitor to lower the threshold by which a Chk1 inhibitor induces replication stress, DNA damage and tumour cell death in a wide range of cancer types may be a useful clinical approach.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Dano ao DNA , Indóis/farmacologia , Isoxazóis/farmacologia , Osteossarcoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Piridonas/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/metabolismo , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/metabolismo , Relação Dose-Resposta a Droga , Células HT29 , Histonas/metabolismo , Humanos , Terapia de Alvo Molecular , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Osteossarcoma/enzimologia , Osteossarcoma/genética , Osteossarcoma/patologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
15.
Sci Rep ; 6: 35874, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27775084

RESUMO

Clinical development of Chk1 inhibitors is currently focussed on evaluating activity as monotherapy and as potentiators of chemotherapy. To aid translation of pre-clinical studies, we sought to understand the effects of the tumour growth environment on Chk1 signalling and sensitivity to small molecule Chk1 inhibition. Spheroid culture altered Chk1 signalling to a more xenograft like state but decreased sensitivity to Chk1 inhibition. Growth in low serum did not alter DDR signalling but increased the sensitivity of A2058 and U2OS tumour cells to Chk1 inhibition. An analysis of the expression levels of replication associated proteins identified a correlation between Cdc6 and pChk1 (S296) as well as total Chk1 in xenograft derived samples and between Cdc6 and total Chk1 in anchorage-dependent growth derived protein samples. No apparent correlation between Chk1 or Cdc6 expression and sensitivity to Chk1 inhibition in vitro was observed. A database analysis revealed upregulation of CDC6 mRNA expression in tumour compared to normal tissue and a correlation between CDC6 and CHEK1 mRNA expression in human cancers. We suggest that Cdc6 overexpression in human tumours requires a concomitant increase in Chk1 to counterbalance the deleterious effects of origin hyperactivation-induced DNA damage.


Assuntos
Antineoplásicos/metabolismo , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/metabolismo , Inibidores Enzimáticos/metabolismo , Neoplasias/patologia , Transdução de Sinais , Microambiente Tumoral , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Proteínas Nucleares/metabolismo
16.
Mol Oncol ; 10(1): 101-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26471831

RESUMO

BACKGROUND: Chk1 inhibitors are currently under clinical evaluation as single agents and in combination with cytotoxic chemotherapy. Understanding determinants of sensitivity and novel combinations is critical for further clinical development. METHODS: Potentiation of mTOR inhibitor cytotoxicity by the Chk1 inhibitor V158411 was determined in p53 mutant colon cancer cells. DNA damage response, expression levels of repair proteins, cell cycle effects and the contribution of alternative DSB repair pathways were further evaluated by western blotting and high content analysis. RESULTS: mTOR inhibitors AZD8055, RAD-001, rapamycin and BEZ235 induced synergistic cytotoxicity with the Chk1 inhibitor V158411 in p53 mutant colon cancer cells. Reduced FANCD2, RAD51 and RPA70, core proteins in homologous recombination repair (HRR) and interstrand crosslink repair (ICLR), following inhibition of mTOR was associated with increased V158411 induced DSBs and caspase 3-independent cell death. Dual mTOR and Chk1 inhibition activated DNA-PKcs. Cells defective in DNA-PKcs exhibited increased resistance to V158411 with Chk1 expression closely correlated to DNA-PKcs expression in various types of cancer. CONCLUSIONS: Down regulation of proteins involved in HRR or ICLR by mTOR inhibitors is associated with increased sensitivity of human tumours to Chk1 inhibitors such as V158411. High levels of DNA-PKcs may be a potential biomarker to stratify patients to Chk1 inhibitor therapy alone or in combination with mTOR inhibitors.


Assuntos
Proteína Quinase Ativada por DNA/metabolismo , Complexos Multiproteicos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/antagonistas & inibidores , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores
17.
Oncotarget ; 6(34): 35797-812, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26437226

RESUMO

Chk1 kinase is a critical component of the DNA damage response checkpoint especially in cancer cells and targeting Chk1 is a potential therapeutic opportunity for potentiating the anti-tumor activity of DNA damaging chemotherapy drugs. Fragment elaboration by structure guided design was utilized to identify and develop a novel series of Chk1 inhibitors culminating in the identification of V158411, a potent ATP-competitive inhibitor of the Chk1 and Chk2 kinases. V158411 abrogated gemcitabine and camptothecin induced cell cycle checkpoints, resulting in the expected modulation of cell cycle proteins and increased cell death in cancer cells. V158411 potentiated the cytotoxicity of gemcitabine, cisplatin, SN38 and camptothecin in a variety of p53 deficient human tumor cell lines in vitro, p53 proficient cells were unaffected. In nude mice, V158411 showed minimal toxicity as a single agent and in combination with irinotecan. In tumor bearing animals, V158411 was detected at high levels in the tumor with a long elimination half-life; no pharmacologically significant in vivo drug-drug interactions with irinotecan were identified through analysis of the pharmacokinetic profiles. V158411 potentiated the anti-tumor activity of irinotecan in a variety of human colon tumor xenograft models without additional systemic toxicity. These results demonstrate the opportunity for combining V158411 with standard of care chemotherapeutic agents to potentiate the therapeutic efficacy of these agents without increasing their toxicity to normal cells. Thus, V158411 would warrant further clinical evaluation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Piridonas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Desenho de Fármacos , Sinergismo Farmacológico , Feminino , Humanos , Irinotecano , Camundongos , Camundongos Nus , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
18.
PLoS One ; 10(7): e0134306, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26218638

RESUMO

High-content imaging is a powerful tool for determining cell phenotypes at the single cell level. Characterising the effect of small molecules on cell cycle distribution is important for understanding their mechanism of action especially in oncology drug discovery but also for understanding potential toxicology liabilities. Here, a high-throughput phenotypic assay utilising the PerkinElmer Operetta high-content imager and Harmony software to determine cell cycle distribution is described. PhenoLOGIC, a machine learning algorithm within Harmony software was employed to robustly separate single cells from cell clumps. DNA content, EdU incorporation and pHH3 (S10) expression levels were subsequently utilised to separate cells into the various phases of the cell cycle. The assay is amenable to multiplexing with an additional pharmacodynamic marker to assess cell cycle changes within a specific cellular sub-population. Using this approach, the cell cycle distribution of γH2AX positive nuclei was determined following treatment with DNA damaging agents. Likewise, the assay can be multiplexed with Ki67 to determine the fraction of quiescent cells and with BrdU dual labelling to determine S-phase duration. This methodology therefore provides a relatively cheap, quick and high-throughput phenotypic method for determining accurate cell cycle distribution for small molecule mechanism of action and drug toxicity studies.


Assuntos
Algoritmos , Ciclo Celular/fisiologia , DNA/análise , Citometria de Fluxo/instrumentação , Glioma/patologia , Microscopia/instrumentação , Software , Bromodesoxiuridina , Proliferação de Células , Citometria de Fluxo/métodos , Células HT29 , Humanos , Microscopia/métodos , Células Tumorais Cultivadas
19.
BMC Cancer ; 14: 570, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25104095

RESUMO

BACKGROUND: Chk1 inhibitors are currently in clinical trials as putative potentiators of cytotoxic chemotherapy drugs. Chk1 inhibitors may exhibit single agent anti-tumor activity in cancers with underlying DNA repair, DNA damage response or DNA replication defects. METHODS: Here we describe the cellular effects of the pharmacological inhibition of the checkpoint kinase Chk1 by the novel inhibitor V158411 in triple-negative breast cancer and ovarian cancer. Cytotoxicity, the effect on DNA damage response and cell cycle along with the ability to potentiate gemcitabine and cisplatin cytotoxicity in cultured cells was investigated. Western blotting of proteins involved in DNA repair, checkpoint activation, cell cycle and apoptosis was used to identify potential predictive biomarkers of Chk1 inhibitor sensitivity. RESULTS: The Chk1 inhibitors V158411, PF-477736 and AZD7762 potently inhibited the proliferation of triple-negative breast cancer cells as well as ovarian cancer cells, and these cell lines were sensitive compared to ER positive breast and other solid cancer cells lines. Inhibition of Chk1 in these sensitive cell lines induced DNA damage and caspase-3/7 dependent apoptosis. Western blot profiling identified pChk1 (S296) as a predictive biomarker of Chk1 inhibitor sensitivity in ovarian and triple-negative breast cancer and pH2AX (S139) in luminal breast cancer. CONCLUSIONS: This finding suggests that Chk1 inhibitors either as single agents or in combination chemotherapy represents a viable therapeutic option for the treatment of triple-negative breast cancer. pChk1 (S296) tumor expression levels could serve as a useful biomarker to stratify patients who might benefit from Chk1 inhibitor therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Indóis/farmacologia , Neoplasias Ovarianas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Piridonas/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Benzodiazepinonas/farmacologia , Benzodiazepinonas/uso terapêutico , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Cisplatino/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Indóis/uso terapêutico , Células MCF-7 , Neoplasias Ovarianas/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Piridonas/uso terapêutico , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia , Ureia/análogos & derivados , Ureia/farmacologia , Ureia/uso terapêutico , Gencitabina
20.
BMC Cancer ; 14: 483, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24996846

RESUMO

BACKGROUND: Chk1 inhibitors are currently in clinical trials in combination with a range of cytotoxic agents and have the potential to potentiate the clinical activity of a large number of standard of care chemotherapeutic agents. Utilizing pharmacodynamic biomarkers to optimize drug dose and scheduling in these trials could greatly enhance the likelihood of clinical success. METHODS: In this study, we evaluated the in vitro potentiation of the cytotoxicity of a range of cytotoxic chemotherapeutic drugs by the novel Chk1 inhibitor V158411 in p53 mutant colon cancer cells. Pharmacodynamic biomarkers were evaluated in vitro. RESULTS: V158411 potentiated the cytotoxicity of a range of chemotherapeutic agents with distinct mechanisms of action in p53 mutant colon cancer cell lines grown in anchorage dependent or independent culture conditions. Analysis of pharmacodynamic biomarker changes identified dependencies on the chemotherapeutic agent, the concentration of the chemotherapeutic and the duration of time between combination treatment and biomarker analysis. A reduction in total Chk1 and S296/S317/S345 phosphorylation occurred consistently with all cytotoxics in combination with V158411 but did not predict cell line potentiation. Induction of γH2AX levels was chemotherapeutic dependent and correlated closely with potentiation of gemcitabine and camptothecin in p53 mutant colon cancer cells. CONCLUSIONS: Our results suggest that Chk1 phosphorylation could be a useful biomarker for monitoring inhibition of Chk1 activity in clinical trials involving a range of V158411-chemotherapy combinations and γH2AX induction as a predictor of potentiation in combinations containing gemcitabine or camptothecin.


Assuntos
Antineoplásicos/farmacocinética , Histonas/metabolismo , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Quinases/metabolismo , Antineoplásicos/uso terapêutico , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Farmacogenética , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...