Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Insect Sci ; 4: 1339143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469344

RESUMO

Helicoverpa armigera, the cotton bollworm moth, is one of the world's most important crop pests, and is spreading throughout the New World from its original range in the Old World. In Brazil, invasive H. armigera has been reported to hybridize with local populations of Helicoverpa zea. The correct identification of H. armigera-H. zea hybrids is important in understanding the origin, spread and future outlook for New World regions that are affected by outbreaks, given that hybridization can potentially facilitate H. zea pesticide resistance and host plant range via introgression of H. armigera genes. Here, we present a genome admixture analysis of high quality genome sequences generated from two H. armigera-H. zea F1 hybrids generated in two different labs. Our admixture pipeline predicts 48.8% and 48.9% H. armigera for the two F1 hybrids, confirming its accuracy. Genome sequences from five H. zea and one H. armigera that were generated as part of the study show no evidence of hybridization. Interestingly, we show that four H. zea genomes generated from a previous study are predicted to possess a proportion of H. armigera genetic material. Using unsupervised clustering to identify non-hybridized H. armigera and H. zea genomes, 8511 ancestry informative markers (AIMs) were identified. Their relative frequencies are consistent with a minor H. armigera component in the four genomes, however its origin remains to be established. We show that the size and quality of genomic reference datasets are critical for accurate hybridization prediction. Consequently, we discuss potential pitfalls in genome admixture analysis of H. armigera-H. zea hybrids, and suggest measures that will improve such analyses.

2.
Biology (Basel) ; 13(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38534456

RESUMO

The eukaryotic lineage has enjoyed a long-term "stable" mutualism between nucleus and mitochondrion, since mitochondrial endosymbiosis began about 2 billion years ago. This mostly cooperative interaction has provided the basis for eukaryotic expansion and diversification, which has profoundly altered the forms of life on Earth. While we ignore the exact biochemical details of how the alpha-proteobacterial ancestor of mitochondria entered into endosymbiosis with a proto-eukaryote, in more general terms, we present a signaling games perspective of how the cooperative relationship became established, and has been maintained. While games are used to understand organismal evolution, information-asymmetric games at the molecular level promise novel insights into endosymbiosis. Using a previously devised biomolecular signaling games approach, we model a sender-receiver information asymmetric game, in which the informed mitochondrial sender signals and the uninformed nuclear receiver may take actions (involving for example apoptosis, senescence, regeneration and autophagy/mitophagy). The simulation shows that cellularization is a stabilizing mechanism for Pareto efficient sender/receiver strategic interaction. In stark contrast, the extracellular environment struggles to maintain efficient outcomes, as senders are indifferent to the effects of their signals upon the receiver. Our hypothesis has translational implications, such as in cellular therapy, as mitochondrial medicine matures. It also inspires speculative conjectures about how an analogous human-AI endosymbiosis may be engineered.

3.
Genes (Basel) ; 14(8)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37628677

RESUMO

Aedes aegypti transmits major arboviruses of public health importance, including dengue, chikungunya, Zika, and yellow fever. The use of insecticides represents the cornerstone of vector control; however, insecticide resistance in Ae. aegypti has become widespread. Understanding the molecular basis of insecticide resistance in this species is crucial to design effective resistance management strategies. Here, we applied Illumina RNA-Seq to study the gene expression patterns associated with resistance to three widely used insecticides (malathion, alphacypermethrin, and lambda-cyhalothrin) in Ae. aegypti populations from two sites (Manatí and Isabela) in Puerto Rico (PR). Cytochrome P450s were the most overexpressed detoxification genes across all resistant phenotypes. Some detoxification genes (CYP6Z7, CYP28A5, CYP9J2, CYP6Z6, CYP6BB2, CYP6M9, and two CYP9F2 orthologs) were commonly overexpressed in mosquitoes that survived exposure to all three insecticides (independent of geographical origin) while others including CYP6BY1 (malathion), GSTD1 (alpha-cypermethrin), CYP4H29 and GSTE6 (lambda-cyhalothrin) were uniquely overexpressed in mosquitoes that survived exposure to specific insecticides. The gene ontology (GO) terms associated with monooxygenase, iron binding, and passive transmembrane transporter activities were significantly enriched in four out of six resistant vs. susceptible comparisons while serine protease activity was elevated in all insecticide-resistant groups relative to the susceptible strain. Interestingly, cuticular-related protein genes (chinase and chitin) were predominantly downregulated, which was also confirmed in the functional enrichment analysis. This RNA-Seq analysis presents a detailed picture of the candidate detoxification genes and other pathways that are potentially associated with pyrethroid and organophosphate resistance in Ae. aegypti populations from PR. These results could inform development of novel molecular tools for detection of resistance-associated gene expression in this important arbovirus vector and guide the design and implementation of resistance management strategies.


Assuntos
Aedes , Inseticidas , Infecção por Zika virus , Zika virus , Animais , Transcriptoma , Inseticidas/farmacologia , Aedes/genética , Malation , Porto Rico , Resistência a Inseticidas/genética , Mosquitos Vetores
4.
bioRxiv ; 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36865340

RESUMO

HKU4-related coronaviruses are a group of betacoronaviruses belonging to the same merbecovirus subgenus as Middle Eastern Respiratory Syndrome coronavirus (MERS-CoV), which causes severe respiratory illness in humans with a mortality rate of over 30%. The high genetic similarity between HKU4-related coronaviruses and MERS-CoV makes them an attractive subject of research for modeling potential zoonotic spillover scenarios. In this study, we identify a novel coronavirus contaminating agricultural rice RNA sequencing datasets from Wuhan, China. The datasets were generated by the Huazhong Agricultural University in early 2020. We were able to assemble the complete viral genome sequence, which revealed that it is a novel HKU4-related merbecovirus. The assembled genome is 98.38% identical to the closest known full genome sequence, Tylonycteris pachypus bat isolate BtTp-GX2012. Using in silico modeling, we identified that the novel HKU4-related coronavirus spike protein likely binds to human dipeptidyl peptidase 4 (DPP4), the receptor used by MERS-CoV. We further identified that the novel HKU4-related coronavirus genome has been inserted into a bacterial artificial chromosome in a format consistent with previously published coronavirus infectious clones. Additionally, we have found a near complete read coverage of the spike gene of the MERS-CoV reference strain HCoV-EMC/2012, and identify the likely presence of a HKU4-related-MERS chimera in the datasets. Our findings contribute to the knowledge of HKU4-related coronaviruses and document the use of a previously unpublished HKU4 reverse genetics system in apparent MERS-CoV related gain-of-function research. Our study also emphasizes the importance of improved biosafety protocols in sequencing centers and coronavirus research facilities.

5.
Acta Biotheor ; 70(1): 4, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34902063

RESUMO

Viruses are the simplest of pathogens, but possess sophisticated molecular mechanisms to manipulate host behavior, frequently utilizing molecular mimicry. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to bind to the host receptor neuropilin-1 in order to gain entry into the cell. To do this, the virus utilizes its spike protein polybasic cleavage site (PCS), which mimics the CendR motif of neuropilin-1's endogenous ligands. In addition to facilitating cell entry, binding to neuropilin-1 has analgesic effects. We discuss the potential impact of neuropilin-1 binding by SARS-CoV-2 in ameliorating sickness behavior of the host, and identify a convergent evolutionary strategy of PCS cleavage and subsequent neuropilin binding in other human viruses. In addition, we discuss the evolutionary leap of the ancestor of SARS-COV-2, which involved acquisition of the PCS thus faciliting binding to the neuropilin-1 receptor. Acquisition of the PCS by the ancestor of SARS-CoV-2 appears to have led to pleiotropic beneficial effects including enhancement of cell entry via binding to ACE2, facilitation of cell entry via binding to neuropilin-1, promotion of analgesia, and potentially the formation of decoy epitopes via enhanced shedding of the S1 subunit. Lastly, other potential neuromanipulation strategies employed by SARS-CoV-2 are discussed, including interferon suppression and the resulting reduction in sickness behavior, enhanced transmission through neurally mediated cough induction, and reduction in sense of smell.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
6.
J R Soc Interface ; 18(175): 20200689, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33622145

RESUMO

Mimicry is exhibited in multiple scales, ranging from molecular, to organismal, and then to human society. 'Batesian'-type mimicry entails a conflict of interest between sender and receiver, reflected in a deceptive mimic signal. 'Müllerian'-type mimicry occurs when there is perfect common interest between sender and receiver in a particular type of encounter, manifested by an honest co-mimic signal. Using a signalling games approach, simulations show that invasion by Batesian mimics will make Müllerian mimicry unstable, in a coevolutionary chase. We use these results to better understand the deceptive strategies of SARS-CoV-2 and their key role in the COVID-19 pandemic. At the biomolecular level, we explain how cellularization promotes Müllerian molecular mimicry, and discourages Batesian molecular mimicry. A wide range of processes analogous to cellularization are presented; these might represent a manner of reducing oscillatory instabilities. Lastly, we identify examples of mimicry in human society that might be addressed using a signalling game approach.


Assuntos
Modelos Imunológicos , Mimetismo Molecular/imunologia , Pandemias , SARS-CoV-2/imunologia , COVID-19/epidemiologia , COVID-19/imunologia , Humanos
7.
Res Sq ; 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32793895

RESUMO

Mimicry is exhibited in multiple scales, ranging from molecular, to organismal, and then to human society. 'Batesian' type mimicry entails a conflict of interest between sender and receiver, reflected in a deceptive mimic signal. 'Mullerian' type mimicry occurs when there is perfect common interest between sender and receiver, manifested by an honest co-mimic signal. Using a signaling games approach, simulations show that invasion by Batesian mimics will make Mullerian mimicry unstable, in a coevolutionary chase. We use these results to better understand the deceptive strategies of SARS-CoV-2 and their key role in the COVID-19 pandemic. At the biomolecular level, we explain how cellularization promotes Mullerian molecular mimicry, and discourages Batesian molecular mimicry. A wide range of processes analogous to cellularization are presented; these might represent a manner of reducing oscillatory instabilities. Lastly, we identify examples of mimicry in human society, that might be addressed using a signaling game approach.

8.
Front Genet ; 10: 240, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024611

RESUMO

Biomolecular networks have already found great utility in characterizing complex biological systems arising from pairwise interactions amongst biomolecules. Here, we explore the important and hitherto neglected role of information asymmetry in the genesis and evolution of such pairwise biomolecular interactions. Information asymmetry between sender and receiver genes is identified as a key feature distinguishing early biochemical reactions from abiotic chemistry, and a driver of network topology as biomolecular systems become more complex. In this context, we review how graph theoretical approaches can be applied not only for a better understanding of various proximate (mechanistic) relations, but also, ultimate (evolutionary) structures encoded in such networks from among all types of variations they induce. Among many possible variations, we emphasize particularly the essential role of gene duplication in terms of signaling game theory, whereby sender and receiver gene players accrue benefit from gene duplication, leading to a preferential attachment mode of network growth. The study of the resulting dynamics suggests many mathematical/computational problems, the majority of which are intractable yet yield to efficient approximation algorithms, when studied through an algebraic graph theoretic lens. We relegate for future work the role of other possible generalizations, additionally involving horizontal gene transfer, sexual recombination, endo-symbiosis, etc., which enrich the underlying graph theory even further.

9.
J Mol Evol ; 87(1): 4-6, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30604016

RESUMO

In a recent Letter, Di Giulio questions the use of the term 'neutral' when describing the process by which error minimization may have arisen as a side-product of genetic code expansion, resulting from the addition of similar amino acids to similar codons (Di Giulio, in J Mol Evol 86(9):593-597, 2018). However, I point out that in this scenario error minimization is non-adaptive, and so 'neutral' is an appropriate term to describe its imperviousness to direct selection. Error minimization is a form of mutational robustness, and so commonly viewed as beneficial. This in turn implies that not all beneficial traits may be adaptations generated by direct selection for that trait.


Assuntos
Adaptação Biológica/genética , Aminoácidos/genética , Código Genético/genética , Evolução Biológica , Códon , Evolução Molecular , Modelos Genéticos , Mutação , Fenótipo , Seleção Genética/genética
10.
Front Pharmacol ; 10: 1550, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038238

RESUMO

Despite some previous examples of successful application to the field of pharmacogenomics, the utility of machine learning (ML) techniques for warfarin dose predictions in Caribbean Hispanic patients has yet to be fully evaluated. This study compares seven ML methods to predict warfarin dosing in Caribbean Hispanics. This is a secondary analysis of genetic and non-genetic clinical data from 190 cardiovascular Hispanic patients. Seven ML algorithms were applied to the data. Data was divided into 80 and 20% to be used as training and test sets. ML algorithms were trained with the training set to obtain the models. Model performance was determined by computing the corresponding mean absolute error (MAE) and % patients whose predicted optimal dose were within ±20% of the actual stabilization dose, and then compared between groups of patients with "normal" (i.e., > 21 but <49 mg/week), low (i.e., ≤21 mg/week, "sensitive"), and high (i.e., ≥49 mg/week, "resistant") dose requirements. Random forest regression (RFR) significantly outperform all other methods, with a MAE of 4.73 mg/week and 80.56% of cases within ±20% of the actual stabilization dose. Among those with "normal" dose requirements, RFR performance is also better than the rest of models (MAE = 2.91 mg/week). In the "sensitive" group, support vector regression (SVR) shows superiority over the others with lower MAE of 4.79 mg/week. Finally, multivariate adaptive splines (MARS) shows the best performance in the resistant group (MAE = 7.22 mg/week) and 66.7% of predictions within ±20%. Models generated by using RFR, MARS, and SVR algorithms showed significantly better predictions of weekly warfarin dosing in the studied cohorts than other algorithms. Better performance of the ML models for patients with "normal," "sensitive," and "resistant" to warfarin were obtained when compared to other populations and previous statistical models.

11.
J R Soc Interface ; 15(146)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30185543

RESUMO

Biological macromolecules encode information: some of it to endow the molecule with structural flexibility, some of it to enable molecular actions as a catalyst or a substrate, but a residual part can be used to communicate with other macromolecules. Thus, macromolecules do not need to possess information only to survive in an environment, but also to strategically interact with others by sending signals to a receiving macromolecule that can properly interpret the signal and act suitably. These sender-receiver signalling games are sustained by the information asymmetry that exists among the macromolecules. In both biochemistry and molecular evolution, the important role of information asymmetry remains largely unaddressed. Here, we provide a new unifying perspective on the impact of information symmetry between macromolecules on molecular evolutionary processes, while focusing on molecular deception. Biomolecular games arise from the ability of biological macromolecules to exert precise recognition, and their role as units of selection, meaning that they are subject to competition and cooperation with other macromolecules. Thus, signalling game theory can be used to better understand fundamental features of living systems such as molecular recognition, molecular mimicry, selfish elements and 'junk' DNA. We show how deceptive behaviour at the molecular level indicates a conflict of interest, and so provides evidence of genetic conflict. This model proposes that molecular deception is diagnostic of selfish behaviour, helping to explain the evasive behaviour of transposable elements in 'junk' DNA, for example. Additionally, in this broad review, a range of major evolutionary transitions are shown to be associated with the establishment of signalling conventions, many of which are susceptible to molecular deception. These perspectives allow us to assign rudimentary behaviour to macromolecules, and show how participation in signalling games differentiates biochemistry from abiotic chemistry.


Assuntos
Bioquímica , Evolução Molecular , Substâncias Macromoleculares/química , Catálise , DNA/química , Árvores de Decisões , Teoria dos Jogos , Código Genético , Modelos Biológicos , Transdução de Sinais
12.
Gene ; 619: 37-43, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28359917

RESUMO

Stop codon reassignments are widely distributed in prokaryotic, eukaryotic and organellar genomes, but are remarkably convergent in terms of the stop codons and amino acids reassigned. Strikingly, the identities of stop codon reassignments are closely matched to the properties of naturally occurring nonsense suppressor (NONS) tRNAs, suggesting that pre-existing nonsense suppression in an ancestral tRNA facilitated the occurrence of stop codon reassignments. Here this idea is expanded, by exploring the mechanism by which the gene duplication of tRNAs has occurred, leading to the reassignment of stop codons. Two types of stop codon reassignment are identified: those that necessitate a tRNA gene duplication, and those that do not because a single tRNA can recognize the reassigned stop codon and the canonical codon(s) for the cognate amino acid. Where tRNA gene duplication has occurred, this implies a multi-functional ancestral NONS tRNA, followed by adaptive mutation in the anticodon of one of the gene duplicates to become complementary to the stop codon, constituting a clear example of escape from adaptive conflict. The best exemplar is the UAA+UAG →gln reassignment, which has occurred 9 times independently in a diverse range of genomes, and appears to reflect the widespread occurrence of naturally occurring nonsense suppression of the UAA+UAG stop codons by glutamine tRNAs. Consideration of pre-existing tRNA functionality and the mechanism of gene duplication provide new insights into the process of stop codon reassignment.


Assuntos
Códon de Terminação/genética , Evolução Molecular , Duplicação Gênica , Código Genético , RNA de Transferência/genética , Animais , Bactérias/genética , Supressão Genética , Leveduras/genética
13.
Ann Hum Genet ; 81(2): 59-77, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28205222

RESUMO

A large discrepancy between the Amerindian contribution to the mitochondrial and nuclear genetic components of 55 Puerto Rican (PR) genomes from the 1000 Genomes Project is identified, with Amerindian mitochondrial haplotypes being highly represented (67.3%), in strong contrast to the Amerindian autosomal contribution (12.9%). I examine the potential causes behind this strong mitonuclear discordance. The Amerindian contribution to the X chromosome is 19.8%, implying assortative mating with Amerindian females during the establishment of the PR population. However, this scenario does not account for the extraordinarily high Amerindian mitochondrial contribution. Demographic simulation of simple assortative mating scenarios during establishment of the PR population indicates that the observed Amerindian mitochondrial contribution is higher than expected. The simulations show that expansion from a small founding population does not produce the observed frequencies, instead producing the frequencies expected under neutrality, with the Amerindian mitochondrial frequencies approximately twice the Amerindian autosomal proportion. In addition, multiple replicated simulations show that drift is an unlikely explanation for the elevated Amerindian mitochondrial frequency, as these are unable to produce the elevated Amerindian mitochondrial frequency observed in the PR genomic dataset, under a range of different starting conditions. I conclude that the mitonuclear discordance appears most consistent with adaptive mitochondrial benefit; however, the molecular mechanism(s) remain to be characterized before this can be confirmed and warrant further investigation. Lastly, I show potential evidence of selection on autosomes and allosomes, using admixture proportions. Interestingly, the major histocompatibility complex locus on chromosome 6 shows greatly elevated single nucleotide polymorphism density but is unaccompanied by strong admixture variance. The observations on mitonuclear discordance may affect the interpretation of apparent assortative mating in recent human admixture events, which should be treated with caution when relying only on mitochondrial haplotype frequencies.


Assuntos
Indígena Americano ou Nativo do Alasca/genética , DNA Mitocondrial/genética , Hispânico ou Latino/genética , Cromossomos Humanos X/genética , Evolução Molecular , Feminino , Deriva Genética , Variação Genética , Genoma Humano , Haplótipos , Humanos , Masculino , Modelos Genéticos , Porto Rico , Seleção Genética
14.
Insects ; 7(4)2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27999386

RESUMO

Tenuipalpidae comprises mites that transmit viruses to agriculturally important plants. Several tenuipalpid species present parthenogenesis, and in Brevipalpus yothersi, the endosymbiont Cardinium has been associated with female-only colonies. It is unclear what the bacterial composition of B. yothersi is, and how common Cardinium is in those microbiomes. We performed a comparative analysis of the bacteriomes in three populations of B. yothersi and three additional Tetranychoidea species using sequences from V4-fragment of 16S DNA. The bacteriomes were dominated by Bacteroidetes (especially Cardinium) and Proteobacteria, showing a remarkably low alpha diversity. Cardinium was present in about 22% of all sequences; however, it was not present in R. indica and T. evansi. In B. yothersi, the proportion of Cardinium was higher in adults than eggs, suggesting that proliferation of the bacteria could be the result of selective pressures from the host. This hypothesis was further supported because colonies of B. yothersi from different populations showed different bacterial assemblages, and bacteriomes from different mite species showed similar abundances of Cardinium. A phylogenetic analysis of Cardinium revealed that not only specialization but horizontal transmission has been important for this symbiosis. Together, these results represent a glimpse into the evolution of the Tetranychoidea and Cardinium.

15.
Microbiol Spectr ; 4(4)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27726760

RESUMO

Forensic science concerns the application of scientific techniques to questions of a legal nature and may also be used to address questions of historical importance. Forensic techniques are often used in legal cases that involve crimes against persons or property, and they increasingly may involve cases of bioterrorism, crimes against nature, medical negligence, or tracing the origin of food- and crop-borne disease. Given the rapid advance of genome sequencing and comparative genomics techniques, we ask how these might be used to address cases of a forensic nature, focusing on the use of microbial genome sequence analysis. Such analyses rely on the increasingly large numbers of microbial genomes present in public databases, the ability of individual investigators to rapidly sequence whole microbial genomes, and an increasing depth of understanding of their evolution and function. Suggestions are made as to how comparative microbial genomics might be applied forensically and may represent possibilities for the future development of forensic techniques. A particular emphasis is on the nascent field of genomic epidemiology, which utilizes rapid whole-genome sequencing to identify the source and spread of infectious outbreaks. Also discussed is the application of comparative microbial genomics to the study of historical epidemics and deaths and how the approaches developed may also be applicable to more recent and actionable cases.


Assuntos
Medicina Legal/métodos , Genômica/métodos , Técnicas Microbiológicas/métodos , Animais , Humanos , Análise de Sequência de DNA
16.
J Theor Biol ; 408: 237-242, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27544417

RESUMO

The standard genetic code (SGC) assigns amino acids to codons in such a way that the impact of point mutations is reduced, this is termed 'error minimization' (EM). The occurrence of EM has been attributed to the direct action of selection, however it is difficult to explain how the searching of alternative codes for an error minimized code can occur via codon reassignments, given that these are likely to be disruptive to the proteome. An alternative scenario is that EM has arisen via the process of genetic code expansion, facilitated by the duplication of genes encoding charging enzymes and adaptor molecules. This is likely to have led to similar amino acids being assigned to similar codons. Strikingly, we show that if during code expansion the most similar amino acid to the parent amino acid, out of the set of unassigned amino acids, is assigned to codons related to those of the parent amino acid, then genetic codes with EM superior to the SGC easily arise. This scheme mimics code expansion via the gene duplication of charging enzymes and adaptors. The result is obtained for a variety of different schemes of genetic code expansion and provides a mechanistically realistic manner in which EM has arisen in the SGC. These observations might be taken as evidence for self-organization in the earliest stages of life.


Assuntos
Código Genético , Modelos Genéticos , Códon/genética , Evolução Molecular , Duplicação Gênica , Mutação
17.
Biol Bull ; 231(3): 236-244, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28048954

RESUMO

An endogenous retrovirus that is present in the sea slug Elysia chlorotica is expressed in all individuals at the end of the annual life cycle. But the precise role of the virus, if any, in slug senescence or death is unknown. We have determined the genomic sequence of the virus and performed a phylogenetic analysis of the data. The 6060-base pair genome of the virus possesses a reverse transcriptase-domain-containing protein that shows similarity to retrotransposon sequences found in Aplysia californica and Strongylocentrotus purpuratus. However, nucleotide BLAST analysis of the whole genome resulted in hits to only a few portions of the genome, indicating that the Elysia chlorotica retrovirus is novel, has not been previously sequenced, and does not have great genetic similarity to other known viral species. When more invertebrate retroviral genomes are examined, a more precise phylogenetic placement of the Elysia chlorotica retrovirus can be determined.


Assuntos
Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Gastrópodes/virologia , Filogenia , Animais , Sequência de Bases , Genoma Viral/genética , Genômica
18.
Appl Netw Sci ; 1(1): 13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-30533505

RESUMO

Here, social network analysis approaches are used to characterize the figure of the biblical Moses, and his relationship with characters from the books of the Pentateuch; Genesis, Exodus, Leviticus, Numbers and Deuteronomy. The potential value of using such quantitative approaches is explored in relation to other forms of textual exegesis. Using a maximum likelihood approach, the degree distributions of the social networks are shown to approximate to a power law with exponential cutoff. The node representing Moses is very highly connected and falls outside the best fit line, as does the node representing Yahweh, which may indicate authorial emphasis. Only the social network from Genesis is assortative, a property typical of many real world social networks. A substantial proportion of disassortativity in the social network based around Moses disappears when the node is removed, potentially indicating some artificiality in its orientation within the network. The approximation of the degree distributions to a power law with exponential cutoff represents an emergent property resulting from the combinatorial and collaborative manner of composition, and indicates a bounding constraint on more highly connected nodes. Unusually highly connected nodes representing the deity and prophet may be characteristic of social networks derived from religious texts.

19.
J Hered ; 106(5): 644-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26320243

RESUMO

The concept of a "proteomic constraint" proposes that DNA repair capacity is positively correlated with the information content of a genome, which can be approximated to the size of the proteome (P). This in turn implies that DNA repair genes are more likely to be present in genomes with larger values of P. This stands in contrast to the common assumption that informational genes have a core function and so are evenly distributed across organisms. We examined the presence/absence of 18 DNA repair genes in bacterial genomes. A positive relationship between gene presence and P was observed for 17 genes in the total dataset, and 16 genes when only nonintracellular bacteria were examined. A marked reduction of DNA repair genes was observed in intracellular bacteria, consistent with their reduced value of P. We also examined archaeal and DNA virus genomes, and show that the presence of DNA repair genes is likewise related to a larger value of P. In addition, the products of the bacterial genes mutY, vsr, and ndk, involved in the correction of GC/AT mutations, are strongly associated with reduced genome GC content. We therefore propose that a reduction in information content leads to a loss of DNA repair genes and indirectly to a reduction in genome GC content in bacteria by exposure to the underlying AT mutation bias. The reduction in P may also indirectly lead to the increase in substitution rates observed in intracellular bacteria via loss of DNA repair genes.


Assuntos
Bactérias/genética , Reparo do DNA , Evolução Molecular , Genes Bacterianos , Archaea/genética , Composição de Bases , Análise por Conglomerados , Vírus de DNA/genética , Genes Arqueais , Genes Virais , Genoma Bacteriano , Taxa de Mutação , Filogenia , Proteoma
20.
Front Genet ; 6: 213, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26150827

RESUMO

Nanopore DNA sequencing via transverse current has emerged as a promising candidate for third-generation sequencing technology. It produces long read lengths which could alleviate problems with assembly errors inherent in current technologies. However, the high error rates of nanopore sequencing have to be addressed. A very important source of the error is the intrinsic noise in the current arising from carrier dispersion along the chain of the molecule, i.e., from the influence of neighboring bases. In this work we perform calculations of the transverse current within an effective multi-orbital tight-binding model derived from first-principles calculations of the DNA/RNA molecules, to study the effect of this structural noise on the error rates in DNA/RNA sequencing via transverse current in nanopores. We demonstrate that a statistical technique, utilizing not only the currents through the nucleotides but also the correlations in the currents, can in principle reduce the error rate below any desired precision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...