Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 17(1): 56, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654330

RESUMO

BACKGROUND: Microbial expansins (EXLXs) are non-lytic proteins homologous to plant expansins involved in plant cell wall formation. Due to their non-lytic cell wall loosening properties and potential to disaggregate cellulosic structures, there is considerable interest in exploring the ability of microbial expansins (EXLX) to assist the processing of cellulosic biomass for broader biotechnological applications. Herein, EXLXs with different modular structure and from diverse phylogenetic origin were compared in terms of ability to bind cellulosic, xylosic, and chitinous substrates, to structurally modify cellulosic fibrils, and to boost enzymatic deconstruction of hardwood pulp. RESULTS: Five heterogeneously produced EXLXs (Clavibacter michiganensis; CmiEXLX2, Dickeya aquatica; DaqEXLX1, Xanthomonas sacchari; XsaEXLX1, Nothophytophthora sp.; NspEXLX1 and Phytophthora cactorum; PcaEXLX1) were shown to bind xylan and hardwood pulp at pH 5.5 and CmiEXLX2 (harboring a family-2 carbohydrate-binding module) also bound well to crystalline cellulose. Small-angle X-ray scattering revealed a 20-25% increase in interfibrillar distance between neighboring cellulose microfibrils following treatment with CmiEXLX2, DaqEXLX1, or NspEXLX1. Correspondingly, combining xylanase with CmiEXLX2 and DaqEXLX1 increased product yield from hardwood pulp by ~ 25%, while supplementing the TrAA9A LPMO from Trichoderma reesei with CmiEXLX2, DaqEXLX1, and NspEXLX1 increased total product yield by over 35%. CONCLUSION: This direct comparison of diverse EXLXs revealed consistent impacts on interfibrillar spacing of cellulose microfibers and performance of carbohydrate-active enzymes predicted to act on fiber surfaces. These findings uncover new possibilities to employ EXLXs in the creation of value-added materials from cellulosic biomass.

2.
Biotechnol Biofuels Bioprod ; 17(1): 47, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539167

RESUMO

BACKGROUND: Oxidative enzymes targeting lignocellulosic substrates are presently classified into various auxiliary activity (AA) families within the carbohydrate-active enzyme (CAZy) database. Among these, the fungal AA3 glucose-methanol-choline (GMC) oxidoreductases with varying auxiliary activities are attractive sustainable biocatalysts and important for biological function. CAZy AA3 enzymes are further subdivided into four subfamilies, with the large AA3_2 subfamily displaying diverse substrate specificities. However, limited numbers of enzymes in the AA3_2 subfamily are currently biochemically characterized, which limits the homology-based mining of new AA3_2 oxidoreductases. Importantly, novel enzyme activities may be discovered from the uncharacterized parts of this large subfamily. RESULTS: In this study, phylogenetic analyses employing a sequence similarity network (SSN) and maximum likelihood trees were used to cluster AA3_2 sequences. A total of 27 AA3_2 proteins representing different clusters were selected for recombinant production. Among them, seven new AA3_2 oxidoreductases were successfully produced, purified, and characterized. These enzymes included two glucose dehydrogenases (TaGdhA and McGdhA), one glucose oxidase (ApGoxA), one aryl alcohol oxidase (PsAaoA), two aryl alcohol dehydrogenases (AsAadhA and AsAadhB), and one novel oligosaccharide (gentiobiose) dehydrogenase (KiOdhA). Notably, two dehydrogenases (TaGdhA and KiOdhA) were found with the ability to utilize phenoxy radicals as an electron acceptor. Interestingly, phenoxy radicals were found to compete with molecular oxygen in aerobic environments when serving as an electron acceptor for two oxidases (ApGoxA and PsAaoA), which sheds light on their versatility. Furthermore, the molecular determinants governing their diverse enzymatic functions were discussed based on the homology model generated by AlphaFold. CONCLUSIONS: The phylogenetic analyses and biochemical characterization of AA3_2s provide valuable guidance for future investigation of AA3_2 sequences and proteins. A clear correlation between enzymatic function and SSN clustering was observed. The discovery and biochemical characterization of these new AA3_2 oxidoreductases brings exciting prospects for biotechnological applications and broadens our understanding of their biological functions.

3.
Biotechnol Biofuels Bioprod ; 17(1): 34, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409122

RESUMO

BACKGROUND: Chitin, the main form of aminated polysaccharide in nature, is a biocompatible, polycationic, and antimicrobial biopolymer used extensively in industrial processes. Despite the abundance of chitin, applications thereof are hampered by difficulties in feedstock harvesting and limited structural versatility. To address these problems, we proposed a two-step cascade employing carbohydrate oxidoreductases and amine transaminases for plant polysaccharide aminations via one-pot reactions. Using a galactose oxidase from Fusarium graminearum for oxidation, this study compared the performance of CvATA (from Chromobacterium violaceum) and SpATA (from Silicibacter pomeroyi) on a range of oxidized carbohydrates with various structures and sizes. Using a rational enzyme engineering approach, four point mutations were introduced on the SpATA surface, and their effects on enzyme activity were evaluated. RESULTS: Herein, a quantitative colorimetric assay was developed to enable simple and accurate time-course measurement of the yield of transamination reactions. With higher operational stability, SpATA produced higher product yields in 36 h reactions despite its lower initial activity. Successful amination of oxidized galactomannan by SpATA was confirmed using a deuterium labeling method; higher aminated carbohydrate yields achieved with SpATA compared to CvATA were verified using HPLC and XPS. By balancing the oxidase and transaminase loadings, improved operating conditions were identified where the side product formation was largely suppressed without negatively impacting the product yield. SpATA mutants with multiple alanine substitutions besides E407A showed improved product yield. The E407A mutation reduced SpATA activity substantially, supporting its predicted role in maintaining the dimeric enzyme structure. CONCLUSIONS: Using oxidase-amine transaminase cascades, the study demonstrated a fully enzymatic route to polysaccharide amination. Although the activity of SpATA may be further improved via enzyme engineering, the low operational stability of characterized amine transaminases, as a result of low retention of PMP cofactors, was identified as a key factor limiting the yield of the designed cascade. To increase the process feasibility, future efforts to engineer improved SpATA variants should focus on improving the cofactor affinity, and thus the operational stability of the enzyme.

4.
Bioresour Technol ; 393: 130084, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000639

RESUMO

Laccase-like multicopper oxidases are recognized for their potential to alter the reactivity of lignins for application in value-added products. Typically, model compounds are employed to discover such enzymes; however, they do not represent the complexity of industrial lignin substrates. In this work, a screening pipeline was developed to test enzymes simultaneously on model compounds and industrial lignins. A total of 12 lignin-active fungal multicopper oxidases were discovered, including 9 enzymes active under alkaline conditions (pH 11.0). Principal component analysis revealed the poor ability of model compounds to predict enzyme performance on industrial lignins. Additionally, sequence similarity analyses grouped these enzymes with Auxiliary Activity-1 sub-families with few previously characterized members, underscoring their taxonomic novelty. Correlation between the lignin-activity of these enzymes and their taxonomic origin, however, was not observed. These are critical insights to bridge the gap between enzyme discovery and application for industrial lignin valorization.


Assuntos
Lacase , Lignina , Humanos , Lacase/metabolismo , Lignina/química , Oxirredução
5.
Bioresour Technol ; 394: 130188, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104665

RESUMO

Microbial expansin-related proteins, including loosenins, can disrupt cellulose networks and increase enzyme accessibility to cellulosic substrates. Herein, four loosenins from Phanerochaete carnosa (PcaLOOLs), and a PcaLOOL fused to a family 63 carbohydrate-binding module, were compared for ability to boost the cellulolytic deconstruction of steam pretreated softwood (SSW) and kraft pulps from softwood (ND-BSKP) and hardwood (ND-BHKP). Amending the Cellic® CTec-2 cellulase cocktail with PcaLOOLs increased reducing products from SSW by up to 40 %, corresponding to 28 % higher glucose yield. Amending Cellic® CTec-2 with PcaLOOLs also increased the release of glucose from ND-BSKP and ND-BHKP by 82 % and 28 %, respectively. Xylose release from ND-BSKP and ND-BHKP increased by 47 % and 57 %, respectively, highlighting the potential of PcaLOOLs to enhance hemicellulose recovery. Scanning electron microscopy and fiber image analysis revealed fibrillation and curlation of ND-BSKP after PcaLOOL treatment, consistent with increasing enzyme accessibility to targeted substrates.


Assuntos
Celulase , Madeira , Madeira/metabolismo , Celulose/metabolismo , Celulase/metabolismo , Proteínas Fúngicas/metabolismo , Glucose , Hidrólise
6.
Biotechnol Biofuels Bioprod ; 16(1): 132, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679837

RESUMO

BACKGROUND: Microbial lytic polysaccharide monooxygenases (LPMOs) cleave diverse biomass polysaccharides, including cellulose and hemicelluloses, by initial oxidation at C1 or C4 of glycan chains. Within the Carbohydrate-Active Enzymes (CAZy) classification, Auxiliary Activity Family 9 (AA9) comprises the first and largest group of fungal LPMOs, which are often also found in tandem with non-catalytic carbohydrate-binding modules (CBMs). LPMOs originally attracted attention for their ability to potentiate complete biomass deconstruction to monosaccharides. More recently, LPMOs have been applied for selective surface modification of insoluble cellulose and chitin. RESULTS: To further explore the catalytic diversity of AA9 LPMOs, over 17,000 sequences were extracted from public databases, filtered, and used to construct a sequence similarity network (SSN) comprising 33 phylogenetically supported clusters. From these, 32 targets were produced successfully in the industrial filamentous fungus Aspergillus niger, 25 of which produced detectable LPMO activity. Detailed biochemical characterization of the eight most highly produced targets revealed individual C1, C4, and mixed C1/C4 regiospecificities of cellulose surface oxidation, different redox co-substrate preferences, and CBM targeting effects. Specifically, the presence of a CBM correlated with increased formation of soluble oxidized products and a more localized pattern of surface oxidation, as indicated by carbonyl-specific fluorescent labeling. On the other hand, LPMOs without native CBMs were associated with minimal release of soluble products and comparatively dispersed oxidation pattern. CONCLUSIONS: This work provides insight into the structural and functional diversity of LPMOs, and highlights the need for further detailed characterization of individual enzymes to identify those best suited for cellulose saccharification versus surface functionalization toward biomaterials applications.

7.
Appl Environ Microbiol ; 89(1): e0186322, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36645281

RESUMO

Microbial expansin-related proteins are ubiquitous across bacterial and fungal organisms and reportedly play a role in the modification and deconstruction of cell wall polysaccharides, including lignocellulose. So far, very few microbial expansin-related proteins, including loosenins and loosenin-like (LOOL) proteins, have been functionally characterized. Herein, four LOOLs encoded by Phanerochaete carnosa and belonging to different subfamilies (i.e., PcaLOOL7 and PcaLOOL9 from subfamily A and PcaLOOL2 and PcaLOOL12 from subfamily B) were recombinantly produced and the purified proteins were characterized using diverse cellulose and chitin substrates. The purified PcaLOOLs weakened cellulose filter paper and cellulose nanofibril networks (CNF); however, none significantly boosted cellulase activity on the selected cellulose substrates (Avicel and Whatman paper). Although fusing the family 63 carbohydrate-binding module (CBM63) of BsEXLX1 encoded by Bacillus subtilis to PcaLOOLs increased their binding to cellulose, the CBM63 fusion appeared to reduce the cellulose filter paper weakening observed using wild-type proteins. Binding of PcaLOOLs to alpha-chitin was considerably higher than that to cellulose (Avicel) and was pH dependent, with the highest binding at pH 5.0. Amendment of certain PcaLOOLs in fungal liquid cultivations also impacted the density of the cultivated mycelia. The present study reveals the potential of fungal expansin-related proteins to impact both cellulose and chitin networks and points to a possible biological role in fungal cell wall processing. IMPORTANCE The present study deepens investigations of microbial expansin-related proteins and their applied significance by (i) reporting a detailed comparison of diverse loosenins encoded by the same organism, (ii) considering both cellulosic and chitin-containing materials as targeted substrates, and (iii) investigating the impact of the C-terminal carbohydrate binding module (CBM) present in other expansin-related proteins on loosenin function. By revealing the potential of fungal loosenins to impact both cellulose and chitin-containing networks, our study reveals a possible biological and applied role of loosenins in fungal cell wall processing.


Assuntos
Celulose , Phanerochaete , Celulose/metabolismo , Quitina , Phanerochaete/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
8.
New Phytol ; 238(1): 297-312, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36600379

RESUMO

Wood is the most important repository of assimilated carbon in the biosphere, in the form of large polymers (cellulose, hemicelluloses including glucuronoxylan, and lignin) that interactively form a composite, together with soluble extractives including phenolic and aliphatic compounds. Molecular interactions among these compounds are not fully understood. We have targeted the expression of a fungal α-glucuronidase to the wood cell wall of aspen (Populus tremula L. × tremuloides Michx.) and Arabidopsis (Arabidopsis thaliana (L.) Heynh), to decrease contents of the 4-O-methyl glucuronopyranose acid (mGlcA) substituent of xylan, to elucidate mGlcA's functions. The enzyme affected the content of aliphatic insoluble cell wall components having composition similar to suberin, which required mGlcA for binding to cell walls. Such suberin-like compounds have been previously identified in decayed wood, but here, we show their presence in healthy wood of both hardwood and softwood species. By contrast, γ-ester bonds between mGlcA and lignin were insensitive to cell wall-localized α-glucuronidase, supporting the intracellular formation of these bonds. These findings challenge the current view of the wood cell wall composition and reveal a novel function of mGlcA substituent of xylan in fastening of suberin-like compounds to cell wall. They also suggest an intracellular initiation of lignin-carbohydrate complex assembly.


Assuntos
Arabidopsis , Populus , Madeira/química , Lignina/metabolismo , Xilanos/metabolismo , Ácido Glucurônico/análise , Ácido Glucurônico/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Populus/metabolismo
9.
Biotechnol Biofuels Bioprod ; 15(1): 135, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476312

RESUMO

BACKGROUND: The Carbohydrate-Active enZymes (CAZy) auxiliary activity family 3 (AA3) comprises flavin adenine dinucleotide-dependent (FAD) oxidoreductases from the glucose-methanol-choline (GMC) family, which play auxiliary roles in lignocellulose conversion. The AA3 subfamily 1 predominantly consists of cellobiose dehydrogenases (CDHs) that typically comprise a dehydrogenase domain, a cytochrome domain, and a carbohydrate-binding module from family 1 (CBM1). RESULTS: In this work, an AA3_1 gene from T. myriococcoides CBS 398.93 encoding only a GMC dehydrogenase domain was expressed in Aspergillus niger. Like previously characterized CDHs, this enzyme (TmXdhA) predominantly accepts linear saccharides with ß-(1 → 4) linkage and targets the hydroxyl on the reducing anomeric carbon. TmXdhA was distinguished, however, by its preferential activity towards xylooligosaccharides over cellooligosaccharides. Amino acid sequence analysis showed that TmXdhA possesses a glutamine at the substrate-binding site rather than a threonine or serine that occupies this position in previously characterized CDHs, and structural models suggest the glutamine in TmXdhA could facilitate binding to pentose sugars. CONCLUSIONS: The biochemical analysis of TmXdhA revealed a catalytic preference for xylooligosaccharide substrates. The modeled structure of TmXdhA provides a reference for the screening of oxidoreductases targeting xylooligosaccharides. We anticipate TmXdhA to be a good candidate for the conversion of xylooligosaccharides to added-value chemicals by its exceptional catalytic ability.

10.
Microbiol Resour Announc ; 11(9): e0058622, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35969048

RESUMO

The brown rot fungus Fomitopsis pinicola efficiently depolymerizes wood cellulose via the combined activities of oxidative and hydrolytic enzymes. Mass spectrometric analyses of culture filtrates identified specific proteins, many of which were differentially regulated in response to substrate composition.

11.
Appl Environ Microbiol ; 88(15): e0096822, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862679

RESUMO

Cellulomonas flavigena is a saprotrophic bacterium that encodes, within its genome, four predicted lytic polysaccharide monooxygenases (LPMOs) from Auxiliary Activity family 10 (AA10). We showed previously that three of these cleave the plant polysaccharide cellulose by oxidation at carbon-1 (J. Li, L. Solhi, E.D. Goddard-Borger, Y. Mattieu et al., Biotechnol Biofuels 14:29, 2021, https://doi.org/10.1186/s13068-020-01860-3). Here, we present the biochemical characterization of the fourth C. flavigena AA10 member (CflaLPMO10D) as a chitin-active LPMO. Both the full-length CflaLPMO10D-Carbohydrate-Binding Module family 2 (CBM2) and catalytic module-only proteins were produced in Escherichia coli using the native general secretory (Sec) signal peptide. To quantify chitinolytic activity, we developed a high-performance anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD) method as an alternative to the established hydrophilic interaction liquid ion chromatography coupled with UV detection (HILIC-UV) method for separation and detection of released oxidized chito-oligosaccharides. Using this method, we demonstrated that CflaLPMO10D is strictly active on the ß-allomorph of chitin, with optimal activity at pH 5 to 6 and a preference for ascorbic acid as the reducing agent. We also demonstrated the importance of the CBM2 member for both mediating enzyme localization to substrates and prolonging LPMO activity. Together with previous work, the present study defines the distinct substrate specificities of the suite of C. flavigena AA10 members. Notably, a cross-genome survey of AA10 members indicated that chitinolytic LPMOs are, in fact, rare among Cellulomonas bacteria. IMPORTANCE Species from the genus Cellulomonas have a long history of study due to their roles in biomass recycling in nature and corresponding potential as sources of enzymes for biotechnological applications. Although Cellulomonas species are more commonly associated with the cleavage and utilization of plant cell wall polysaccharides, here, we show that C. flavigena produces a unique lytic polysaccharide monooxygenase with activity on ß-chitin, which is found, for example, in arthropods. The limited distribution of orthologous chitinolytic LPMOs suggests adaptation of individual cellulomonads to specific nutrient niches present in soil ecosystems. This research provides new insight into the biochemical specificity of LPMOs in Cellulomonas species and related bacteria, and it raises new questions about the physiological function of these enzymes.


Assuntos
Cellulomonas , Oxigenases de Função Mista , Bactérias/metabolismo , Cellulomonas/metabolismo , Quitina/metabolismo , Ecossistema , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Especificidade por Substrato
12.
Acta Biomater ; 147: 209-220, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643199

RESUMO

Common periodontal disease treatment procedures often fail to restore the structural integrity of the junctional epithelium (JE), the epithelial attachment of the gum to the tooth, leaving the tooth-gum interface prone to bacterial colonization. To address this issue, we introduced a novel bio-inspired protein complex comprised of a proline-rich enamel protein, SCPPPQ1, and laminin 332 (LAM332) to enhance the JE attachment. Using quartz crystal microbalance with dissipation monitoring (QCM-D), we showed that SCPPPQ1 and LAM332 interacted and assembled into a protein complex with high-affinity adsorption of 5.9e-8 [M] for hydroxyapatite (HA), the main component of the mineralized tooth surfaces. We then designed a unique shear device to study the adhesion strength of the oral epithelial cells to HA. The SCPPPQ1/LAM332 complex resulted in a twofold enhancement in adhesion strength of the cells to HA compared to LAM332 (from 31 dyn/cm2 to 63 dyn/cm2). In addition, using a modified wound-healing assay, we showed that gingival epithelial cells demonstrated a significantly high migration rate of 2.7 ± 0.24 µm/min over SCPPPQ1/LAM332-coated surfaces. Our collective data show that this protein complex has the potential to be further developed in designing a bioadhesive to enhance the JE attachment and protect the underlying connective tissue from bacterial invasion. However, its efficacy for wound healing requires further testing in vivo. STATEMENT OF SIGNIFICANCE: This work is the first functional study towards understanding the combined role of the enamel protein SCPPPQ1 and laminin 332 (LAM332) in the epithelial attachment of the gum, the junctional epithelium (JE), to the tooth hydroxyapatite surfaces. Such studies are essential for developing therapeutic approaches to restore the integrity of the JE in the destructive form of gum infection. We have developed a model system that provided the first evidence of the strong interaction between SCPPPQ1 and LAM332 on hydroxyapatite surfaces that favored protein adsorption and subsequently oral epithelial cell attachment and migration. Our collective data strongly suggested using the SCPPPQ1/LAM332 complex to accelerate the reestablishment of the JE after surgical gum removal to facilitate gum regeneration.


Assuntos
Inserção Epitelial , Células Epiteliais , Membrana Basal/metabolismo , Inserção Epitelial/metabolismo , Gengiva , Hidroxiapatitas , Regeneração , Cicatrização
13.
Molecules ; 27(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35566004

RESUMO

Acetylated glucuronoxylan is one of the most common types of hemicellulose in nature. The structure is formed by a ß-(1→4)-linked D-xylopyranosyl (Xylp) backbone that can be substituted with an acetyl group at O-2 and O-3 positions, and α-(1→2)-linked 4-O-methylglucopyranosyluronic acid (MeGlcpA). Acetyl xylan esterases (AcXE) that target mono- or doubly acetylated Xylp are well characterized; however, the previously studied AcXE from Flavobacterium johnsoniae (FjoAcXE) was the first to remove the acetyl group from 2-O-MeGlcpA-3-O-acetyl-substituted Xylp units, yet structural characteristics of these enzymes remain unspecified. Here, six homologs of FjoAcXE were produced and three crystal structures of the enzymes were solved. Two of them are complex structures, one with bound MeGlcpA and another with acetate. All homologs were confirmed to release acetate from 2-O-MeGlcpA-3-O-acetyl-substituted xylan, and the crystal structures point to key structural elements that might serve as defining features of this unclassified carbohydrate esterase family. Enzymes comprised two domains: N-terminal CBM domain and a C-terminal SGNH domain. In FjoAcXE and all studied homologs, the sequence motif around the catalytic serine is Gly-Asn-Ser-Ile (GNSI), which differs from other SGNH hydrolases. Binding by the MeGlcpA-Xylp ligand is directed by positively charged and highly conserved residues at the interface of the CBM and SGNH domains of the enzyme.


Assuntos
Esterases , Xilanos , Acetatos , Esterases/metabolismo , Especificidade por Substrato , Xilanos/química
14.
Appl Microbiol Biotechnol ; 106(8): 2969-2979, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35449361

RESUMO

Softwood kraft lignin is a major bioresource relevant to the production of sustainable bio-based products. Continued challenges to lignin valorization, however, include poor solubility in organic solvents and in aqueous solutions at neutral pH. Herein, an alkaline tolerant laccase was used to graft acrylate functionalities onto softwood kraft lignin, which is expected to enhance the reactivity of lignin with isocyanate when producing bio-based polyurethanes. Proton nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and high-performance liquid chromatography were used to confirm successful grafting of the acrylate monomer onto lignin and verify the importance of including tert-butyl hydroperoxide as an initiator in the grafting reaction. Laccase-mediated grafting of softwood kraft lignin under alkaline conditions produced lignin products with approximately 30% higher hydroxyl value and higher reactivity toward isocyanate. The reported enzymatic and aqueous process presents an opportunity for the sustainable valorization of softwood kraft lignin. KEY POINTS: • Softwood kraft lignin displayed high phenolic hydroxyl content, polydispersity index and average molecular weight • Grafting hydroxyethyl acrylate (HEA) monomer onto kraft lignin by laccase was successful at 60 °C and alkaline conditions • Lignin-HEA grafted copolymer showed an increase in total OH value and an increase in average molecular weight.


Assuntos
Lacase , Lignina , Acrilatos , Isocianatos , Lacase/química , Lignina/química , Polímeros , Água/química
15.
Biotechnol Biofuels Bioprod ; 15(1): 30, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296345

RESUMO

BACKGROUND: Substrate accessibility remains a key limitation to the efficient enzymatic deconstruction of lignocellulosic biomass. Limited substrate accessibility is often addressed by increasing enzyme loading, which increases process and product costs. Alternatively, considerable efforts are underway world-wide to identify amorphogenesis-inducing proteins and protein domains that increase the accessibility of carbohydrate-active enzymes to targeted lignocellulose components. RESULTS: We established a three-dimensional assay, PACER (plant cell wall model for the analysis of non-catalytic and enzymatic responses), that enables analysis of enzyme migration through defined lignocellulose composites. A cellulose/azo-xylan composite was made to demonstrate the PACER concept and then used to test the migration and activity of multiple xylanolytic enzymes. In addition to non-catalytic domains of xylanases, the potential of loosenin-like proteins to boost xylanase migration through cellulose/azo-xylan composites was observed. CONCLUSIONS: The PACER assay is inexpensive and parallelizable, suitable for screening proteins for ability to increase enzyme accessibility to lignocellulose substrates. Using the PACER assay, we visualized the impact of xylan-binding modules and loosenin-like proteins on xylanase mobility and access to targeted substrates. Given the flexibility to use different composite materials, the PACER assay presents a versatile platform to study impacts of lignocellulose components on enzyme access to targeted substrates.

16.
Curr Opin Biotechnol ; 73: 51-60, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34311175

RESUMO

Xylan is one of the most abundant, natural polysaccharides, and much recent interest focuses on upgrading heteroxylan to make use of its unique structures and chemistries. Significant progress has been made in the discovery and application of novel enzymes for debranching and modifying heteroxylans. Debranching enzymes include acetylxylan esterases, α-l-arabinofuranosidases and α-d-glucuronidases that release side groups from the xylan backbone to recover both biochemicals and less substituted xylans for polymer applications in food packaging or drug delivery systems. Besides esterases and hydrolases, many oxidoreductases including carbohydrate oxidases, lytic polysaccharide monooxygenases, laccases and peroxidases have been also applied to alter different types of xylans for improved physical and chemical properties. This review will highlight the recent discovery and application of enzymes for upgrading xylans for use as added-value chemicals and in functional polymers.


Assuntos
Polímeros , Xilanos , Esterases/química , Polissacarídeos
18.
Front Microbiol ; 12: 723524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733245

RESUMO

The relative ability of the small laccase (sLac) and dye-decoloring peroxidase (DyP2) from Amycolatopsis sp. 75iv2 to transform a variety of lignins was investigated using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The enzymes modified organosolv hardwood lignin to different extents even in the absence of an added mediator. More particularly, sLac decreased the lignin modification metric S (S-lignin)/Ar (total aromatics) by 58% over 16h, while DyP2 lowered this ratio by 31% in the absence of exogenous H2O2. When used on their own, both sLac and DyP2 also modified native lignin present in aspen wood powder, albeit to lesser extents than in the organosolv lignin. The addition of ABTS for sLac and Mn2+ as well as H2O2 for DyP2 led to increased lignin modification in aspen wood powder as reflected by a decrease in the G/Ar metric by up to a further 13%. This highlights the importance of exogenous mediators for transforming lignin within its native matrix. Furthermore, the addition of ABTS reduced the selectivity of sLac for S-lignin over G-lignin, indicating that the mediator also altered the product profiles. Finally, when sLac was included in reactions containing DyP2, in part to generate H2O2 in situ, the relative abundance of lignin products differed from individual enzymatic treatments. Overall, these results identify possible routes to tuning lignin modification or delignification through choice of enzyme and mediator. Moreover, the current study expands the application of ToF-SIMS to evaluating enzyme action on technical lignins, which can accelerate the discovery and engineering of industrially relevant enzymes for lignin valorization.

19.
Appl Environ Microbiol ; 87(16): e0032921, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34313495

RESUMO

Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed gene expression levels of F. pinicola from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and time points. Nevertheless, differential gene expression was observed across all pairwise comparisons of substrates and time points. Genes exhibiting differential expression encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi. IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that allow fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species­aspen, pine, and spruce­under various culture conditions. We found that F. pinicola is able to modify gene expression (transcription levels) across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This study provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...