Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Diabetes ; 73(3): 461-473, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055903

RESUMO

As professional secretory cells, ß-cells require adaptable mRNA translation to facilitate a rapid synthesis of proteins, including insulin, in response to changing metabolic cues. Specialized mRNA translation programs are essential drivers of cellular development and differentiation. However, in the pancreatic ß-cell, the majority of factors identified to promote growth and development function primarily at the level of transcription. Therefore, despite its importance, the regulatory role of mRNA translation in the formation and maintenance of functional ß-cells is not well defined. In this study, we have identified a translational regulatory mechanism mediated by the specialized mRNA translation factor eukaryotic initiation factor 5A (eIF5A), which facilitates the maintenance of ß-cell identity and function. The mRNA translation function of eIF5A is only active when it is posttranslationally modified ("hypusinated") by the enzyme deoxyhypusine synthase (DHPS). We have discovered that the absence of ß-cell DHPS in mice reduces the synthesis of proteins critical to ß-cell identity and function at the stage of ß-cell maturation, leading to a rapid and reproducible onset of diabetes. Therefore, our work has revealed a gatekeeper of specialized mRNA translation that permits the ß-cell, a metabolically responsive secretory cell, to maintain the integrity of protein synthesis necessary during times of induced or increased demand.


Assuntos
Células Secretoras de Insulina , Fatores de Iniciação de Peptídeos , Animais , Camundongos , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Células Secretoras de Insulina/metabolismo , Biossíntese de Proteínas , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo
2.
Cell Rep Med ; 4(11): 101261, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37918404

RESUMO

In preclinical models, α-difluoromethylornithine (DFMO), an ornithine decarboxylase (ODC) inhibitor, delays the onset of type 1 diabetes (T1D) by reducing ß cell stress. However, the mechanism of DFMO action and its human tolerability remain unclear. In this study, we show that mice with ß cell ODC deletion are protected against toxin-induced diabetes, suggesting a cell-autonomous role of ODC during ß cell stress. In a randomized controlled trial (ClinicalTrials.gov: NCT02384889) involving 41 recent-onset T1D subjects (3:1 drug:placebo) over a 3-month treatment period with a 3-month follow-up, DFMO (125-1,000 mg/m2) is shown to meet its primary outcome of safety and tolerability. DFMO dose-dependently reduces urinary putrescine levels and, at higher doses, preserves C-peptide area under the curve without apparent immunomodulation. Transcriptomics and proteomics of DFMO-treated human islets exposed to cytokine stress reveal alterations in mRNA translation, nascent protein transport, and protein secretion. These findings suggest that DFMO may preserve ß cell function in T1D through islet cell-autonomous effects.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Inibidores da Ornitina Descarboxilase/farmacologia , Eflornitina/farmacologia , Eflornitina/uso terapêutico , Putrescina/metabolismo
3.
HGG Adv ; 4(3): 100206, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37333770

RESUMO

DHPS deficiency is a rare genetic disease caused by biallelic hypomorphic variants in the Deoxyhypusine synthase (DHPS) gene. The DHPS enzyme functions in mRNA translation by catalyzing the post-translational modification, and therefore activation, of eukaryotic initiation factor 5A (eIF5A). The observed clinical outcomes associated with human mutations in DHPS include developmental delay, intellectual disability, and seizures. Therefore, to increase our understanding of this rare disease, it is critical to determine the mechanisms by which mutations in DHPS alter neurodevelopment. In this study, we have generated patient-derived lymphoblast cell lines and demonstrated that human DHPS variants alter DHPS protein abundance and impair enzyme function. Moreover, we observe a shift in the abundance of the post-translationally modified forms of eIF5A; specifically, an increase in the nuclear localized acetylated form (eIF5AAcK47) and concomitant decrease in the cytoplasmic localized hypusinated form (eIF5AHYP). Generation and characterization of a mouse model with a genetic deletion of Dhps in the brain at birth shows that loss of hypusine biosynthesis impacts neuronal function due to impaired eIF5AHYP-dependent mRNA translation; this translation defect results in altered expression of proteins required for proper neuronal development and function. This study reveals new insight into the biological consequences and molecular impact of human DHPS deficiency and provides valuable information toward the goal of developing treatment strategies for this rare disease.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Fatores de Iniciação de Peptídeos , Doenças Raras , Animais , Humanos , Recém-Nascido , Camundongos , Homeostase/genética , Mutação , Fatores de Iniciação de Peptídeos/genética , Processamento de Proteína Pós-Traducional/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Fator de Iniciação de Tradução Eucariótico 5A
4.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37162889

RESUMO

As professional secretory cells, beta cells require adaptable mRNA translation to facilitate a rapid synthesis of proteins, including insulin, in response to changing metabolic cues. Specialized mRNA translation programs are essential drivers of cellular development and differentiation. However, in the pancreatic beta cell, the majority of factors identified to promote growth and development function primarily at the level of transcription. Therefore, despite its importance, the regulatory role of mRNA translation in the formation and maintenance of functional beta cells is not well defined. In this study, we have identified a translational regulatory mechanism in the beta cell driven by the specialized mRNA translation factor, eukaryotic initiation factor 5A (eIF5A), which facilitates beta cell maturation. The mRNA translation function of eIF5A is only active when it is post-translationally modified ("hypusinated") by the enzyme deoxyhypusine synthase (DHPS). We have discovered that the absence of beta cell DHPS in mice reduces the synthesis of proteins critical to beta cell identity and function at the stage of beta cell maturation, leading to a rapid and reproducible onset of diabetes. Therefore, our work has revealed a gatekeeper of specialized mRNA translation that permits the beta cell, a metabolically responsive secretory cell, to maintain the integrity of protein synthesis necessary during times of induced or increased demand. ARTICLE HIGHLIGHTS: Pancreatic beta cells are professional secretory cells that require adaptable mRNA translation for the rapid, inducible synthesis of proteins, including insulin, in response to changing metabolic cues. Our previous work in the exocrine pancreas showed that development and function of the acinar cells, which are also professional secretory cells, is regulated at the level of mRNA translation by a specialized mRNA translation factor, eIF5A HYP . We hypothesized that this translational regulation, which can be a response to stress such as changes in growth or metabolism, may also occur in beta cells. Given that the mRNA translation function of eIF5A is only active when the factor is post-translationally modified ("hypusinated") by the enzyme deoxyhypusine synthase (DHPS), we asked the question: does DHPS/eIF5A HYP regulate the formation and maintenance of functional beta cells? We discovered that in the absence of beta cell DHPS in mice, eIF5A is not hypusinated (activated), which leads to a reduction in the synthesis of critical beta cell proteins that interrupts pathways critical for identity and function. This translational regulation occurs at weaning age, which is a stage of cellular stress and maturation for the beta cell. Therefore without DHPS/eIF5A HYP , beta cells do not mature and mice progress to hyperglycemia and diabetes. Our findings suggest that secretory cells have a mechanism to regulate mRNA translation during times of cellular stress. Our work also implies that driving an increase in mRNA translation in the beta cell might overcome or possibly reverse the beta cell defects that contribute to early dysfunction and the progression to diabetes.

6.
Diabetes ; 72(4): 433-448, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36940317

RESUMO

The Integrated Physiology of the Exocrine and Endocrine Compartments in Pancreatic Diseases workshop was a 1.5-day scientific conference at the National Institutes of Health (Bethesda, MD) that engaged clinical and basic science investigators interested in diseases of the pancreas. This report provides a summary of the proceedings from the workshop. The goals of the workshop were to forge connections and identify gaps in knowledge that could guide future research directions. Presentations were segregated into six major theme areas, including 1) pancreas anatomy and physiology, 2) diabetes in the setting of exocrine disease, 3) metabolic influences on the exocrine pancreas, 4) genetic drivers of pancreatic diseases, 5) tools for integrated pancreatic analysis, and 6) implications of exocrine-endocrine cross talk. For each theme, multiple presentations were followed by panel discussions on specific topics relevant to each area of research; these are summarized here. Significantly, the discussions resulted in the identification of research gaps and opportunities for the field to address. In general, it was concluded that as a pancreas research community, we must more thoughtfully integrate our current knowledge of normal physiology as well as the disease mechanisms that underlie endocrine and exocrine disorders so that there is a better understanding of the interplay between these compartments.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , Pâncreas Exócrino , Pancreatopatias , Humanos , Diabetes Mellitus/metabolismo , Pâncreas , Pancreatopatias/metabolismo
7.
Front Endocrinol (Lausanne) ; 13: 904004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769082

RESUMO

Diabetes mellitus, a disease that affects nearly 536.6 million people worldwide, is characterized by the death or dysfunction of insulin-producing beta cells of the pancreas. The beta cells are found within the islets of Langerhans, which are composed of multiple hormone-producing endocrine cells including the alpha (glucagon), delta (somatostatin), PP (pancreatic polypeptide), and epsilon (ghrelin) cells. There is direct evidence that physical and paracrine interactions between the cells in the islet facilitate and support beta cell function. However, communication between endocrine and exocrine cells in the pancreas may also directly impact beta cell growth and function. Herein we review literature that contributes to the view that "crosstalk" between neighboring cells within the pancreas influences beta cell growth and function and the maintenance of beta cell health.


Assuntos
Diabetes Mellitus , Células Endócrinas , Células Secretoras de Insulina , Glucagon , Humanos , Pâncreas
8.
Pancreas ; 51(9): 1061-1073, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078927

RESUMO

ABSTRACT: The "Integrated Physiology of the Exocrine and Endocrine Compartments in Pancreatic Diseases" Workshop was a 1.5-day scientific conference at the National Institutes of Health (Bethesda, MD) that engaged clinical and basic science investigators interested in diseases of the pancreas. This report summarizes the workshop proceedings. The goal of the workshop was to forge connections and identify gaps in knowledge that could guide future research directions. Presentations were segregated into 6 major themes, including (a) Pancreas Anatomy and Physiology; (b) Diabetes in the Setting of Exocrine Disease; (c) Metabolic Influences on the Exocrine Pancreas; (d) Genetic Drivers of Pancreatic Diseases; (e) Tools for Integrated Pancreatic Analysis; and (f) Implications of Exocrine-Endocrine Crosstalk. For each theme, there were multiple presentations followed by panel discussions on specific topics relevant to each area of research; these are summarized herein. Significantly, the discussions resulted in the identification of research gaps and opportunities for the field to address. In general, it was concluded that as a pancreas research community, we must more thoughtfully integrate our current knowledge of the normal physiology as well as the disease mechanisms that underlie endocrine and exocrine disorders so that there is a better understanding of the interplay between these compartments.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , Pâncreas Exócrino , Pancreatopatias , Humanos , Diabetes Mellitus/terapia , Diabetes Mellitus/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo , Pâncreas Exócrino/metabolismo , Pancreatopatias/diagnóstico , Pancreatopatias/terapia , Pancreatopatias/metabolismo
9.
J Biol Chem ; 297(5): 101333, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34688659

RESUMO

Eukaryotic initiation factor 5A (eIF5A)†,‡ is an essential protein that requires a unique amino acid, hypusine, for its activity. Hypusine is formed exclusively in eIF5A post-translationally via two enzymes, deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase. Each of the genes encoding these proteins, Eif5a, Dhps, and Dohh, is required for mouse embryonic development. Variants in EIF5A or DHPS were recently identified as the genetic basis underlying certain rare neurodevelopmental disorders in humans. To investigate the roles of eIF5A and DHPS in brain development, we generated four conditional KO mouse strains using the Emx1-Cre or Camk2a-Cre strains and examined the effects of temporal- and region-specific deletion of Eif5a or Dhps. The conditional deletion of Dhps or Eif5a by Emx1 promotor-driven Cre expression (E9.5, in the cortex and hippocampus) led to gross defects in forebrain development, reduced growth, and premature death. On the other hand, the conditional deletion of Dhps or Eif5a by Camk2a promoter-driven Cre expression (postnatal, mainly in the CA1 region of the hippocampus) did not lead to global developmental defects; rather, these KO animals exhibited severe impairment in spatial learning, contextual learning, and memory when subjected to the Morris water maze and a contextual learning test. In both models, the Dhps-KO mice displayed more severe impairment than their Eif5a-KO counterparts. The observed defects in the brain, global development, or cognitive functions most likely result from translation errors due to a deficiency in active, hypusinated eIF5A. Our study underscores the important roles of eIF5A and DHPS in neurodevelopment.


Assuntos
Córtex Cerebelar/metabolismo , Cognição , Hipocampo/metabolismo , Oxigenases de Função Mista/metabolismo , Neurogênese , Neurônios/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos , Camundongos Knockout , Oxigenases de Função Mista/genética , Especificidade de Órgãos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Fator de Iniciação de Tradução Eucariótico 5A
10.
Cell Metab ; 33(9): 1883-1893.e7, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496231

RESUMO

The metabolic inflammation (meta-inflammation) of obesity is characterized by proinflammatory macrophage infiltration into adipose tissue. Catalysis by deoxyhypusine synthase (DHPS) modifies the translation factor eIF5A to generate a hypusine (Hyp) residue. Hypusinated eIF5A (eIF5AHyp) controls the translation of mRNAs involved in inflammation, but its role in meta-inflammation has not been elucidated. Levels of eIF5AHyp were found to be increased in adipose tissue macrophages from obese mice and in murine macrophages activated to a proinflammatory M1-like state. Global proteomics and transcriptomics revealed that DHPS deficiency in macrophages altered the abundance of proteins involved in NF-κB signaling, likely through translational control of their respective mRNAs. DHPS deficiency in myeloid cells of obese mice suppressed M1 macrophage accumulation in adipose tissue and improved glucose tolerance. These findings indicate that DHPS promotes the post-transcriptional regulation of a subset of mRNAs governing inflammation and chemotaxis in macrophages and contributes to a proinflammatory M1-like phenotype.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Tecido Adiposo/metabolismo , Animais , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fenótipo
11.
FASEB J ; 35(5): e21473, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811703

RESUMO

Pancreatic diseases including diabetes and exocrine insufficiency would benefit from therapies that reverse cellular loss and/or restore cellular mass. The identification of molecular pathways that influence cellular growth is therefore critical for future therapeutic generation. Deoxyhypusine synthase (DHPS) is an enzyme that post-translationally modifies and activates the mRNA translation factor eukaryotic initiation factor 5A (eIF5A). Previous work demonstrated that the inhibition of DHPS impairs zebrafish exocrine pancreas development; however, the link between DHPS, eIF5A, and regulation of pancreatic organogenesis remains unknown. Herein we identified that the conditional deletion of either Dhps or Eif5a in the murine pancreas results in the absence of acinar cells. Because DHPS catalyzes the activation of eIF5A, we evaluated and uncovered a defect in mRNA translation concomitant with defective production of proteins that influence cellular development. Our studies reveal a heretofore unappreciated role for DHPS and eIF5A in the synthesis of proteins required for cellular development and function.


Assuntos
Lisina/análogos & derivados , Organogênese , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/fisiologia , Pâncreas Exócrino/citologia , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Animais , Proliferação de Células , Feminino , Lisina/biossíntese , Masculino , Camundongos , Camundongos Knockout , Pâncreas Exócrino/metabolismo , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Fator de Iniciação de Tradução Eucariótico 5A
12.
Islets ; 12(5): 99-107, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32715853

RESUMO

Type 1 diabetes (T1D) is a disease characterized by destruction of the insulin-producing beta cells. Currently, there remains a critical gap in our understanding of how to reverse or prevent beta cell loss in individuals with T1D. Previous studies in mice discovered that pharmacologically inhibiting polyamine biosynthesis using difluoromethylornithine (DFMO) resulted in preserved beta cell function and mass. Similarly, treatment of non-obese diabetic mice with the tyrosine kinase inhibitor Imatinib mesylate reversed diabetes. The promising findings from these animal studies resulted in the initiation of two separate clinical trials that would repurpose either DFMO (NCT02384889) or Imatinib (NCT01781975) and determine effects on diabetes outcomes; however, whether these drugs directly stimulated beta cell growth remained unknown. To address this, we used the zebrafish model system to determine pharmacological impact on beta cell regeneration. After induction of beta cell death, zebrafish embryos were treated with either DFMO or Imatinib. Neither drug altered whole-body growth or exocrine pancreas length. Embryos treated with Imatinib showed no effect on beta cell regeneration; however, excitingly, DFMO enhanced beta cell regeneration. These data suggest that pharmacological inhibition of polyamine biosynthesis may be a promising therapeutic option to stimulate beta cell regeneration in the setting of diabetes.


Assuntos
Células Secretoras de Insulina/fisiologia , Poliaminas/metabolismo , Animais , Eflornitina/farmacologia , Imunofluorescência , Mesilato de Imatinib/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Regeneração/efeitos dos fármacos , Peixe-Zebra/embriologia
13.
PLoS One ; 15(3): e0230627, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32208453

RESUMO

The gene encoding eukaryotic initiation factor 5A (EIF5A) is found in diabetes-susceptibility loci in mouse and human. eIF5A is the only protein known to contain hypusine (hydroxyputrescine lysine), a polyamine-derived amino acid formed post-translationally in a reaction catalyzed by deoxyhypusine synthase (DHPS). Previous studies showed pharmacologic blockade of DHPS in type 1 diabetic NOD mice and type 2 diabetic db/db mice improved glucose tolerance and preserved beta cell mass, which suggests that hypusinated eIF5A (eIF5AHyp) may play a role in diabetes pathogenesis by direct action on the beta cells and/or altering the adaptive or innate immune responses. To translate these findings to human, we examined tissue from individuals with and without type 1 and type 2 diabetes to determine the expression of eIF5AHyp. We detected eIF5AHyp in beta cells, exocrine cells and immune cells; however, there was also unexpected enrichment of eIF5AHyp in pancreatic polypeptide-expressing PP cells. Interestingly, the presence of eIF5AHyp co-expressing PP cells was not enhanced with disease. These data identify new aspects of eIF5A biology and highlight the need to examine human tissue to understand disease.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/patologia , Lisina/análogos & derivados , Pâncreas/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Baço/metabolismo , Adulto , Animais , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Células Secretoras de Polipeptídeo Pancreático/citologia , Células Secretoras de Polipeptídeo Pancreático/metabolismo , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Adulto Jovem , Fator de Iniciação de Tradução Eucariótico 5A
14.
Arch Autoimmune Dis ; 1(1): 3-13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34414399

RESUMO

The protein hormone adiponectin regulates glucose and fatty acid metabolism by binding to two PAQR-family receptors (AdipoR1 and AdipoR2). Both receptors feature a C-terminal segment which is released by proteolysis to form a freely circulating C-terminal fragment (CTF) found in the plasma of normal individuals but not in some undefined diabetes patients. The AdipoR1-CTF344-376 is a competitive inhibitor of tumor necrosis factor α cleavage enzyme (TACE) but it contains a shorter peptide domain (AdipoR1 CTF351-362) that is a strong non-competitive inhibitor of insulin-degrading enzyme (IDE). The link between adiponectin receptor fragmentation and diabetes pathology is unclear but could lead to new therapeutic strategies. We therefore investigated physiological variations in the concentrations of CTF in non-obese diabetic (NOD/ShiLtJ) mice and C57BL/6 mice with diet-induced obesity (DIO) as models of diabetes types 1 and 2, respectively. We tested for changes in adiponectin receptor signaling, immune responses, disease progression, and the abundance of neutralizing autoantibodies. Finally, we administered exogenous AdipoR1-CTF peptides either containing or lacking the IDE-binding domain. We observed the more pronounced CTF shedding in the TACE-active NOD mice, which represents an inflammatory autoimmune phenotype, but fragmentation was also observed to a lesser extent in the DIO model. Autoantibodies to CTF were detected in both models. Neither exogenous CTF peptide affected IgG-CTF plasma levels, body weight or the conversion of NOD mice to diabetes. The pattern of AdipoR1 fragmentation and autoantibody production under physiological conditions of aging, DIO, and autoimmune diabetes therefore provides insight into the association adiponectin biology and diabetes.

15.
Sci Signal ; 12(610)2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796630

RESUMO

Deoxyhypusine synthase (DHPS) uses the polyamine spermidine to catalyze the hypusine modification of the mRNA translation factor eIF5A and promotes oncogenesis through poorly defined mechanisms. Because germline deletion of Dhps is embryonically lethal, its role in normal postnatal cellular function in vivo remains unknown. We generated a mouse model that enabled the inducible, postnatal deletion of Dhps specifically in postnatal islet ß cells, which function to maintain glucose homeostasis. Removal of Dhps did not have an effect under normal physiologic conditions. However, upon development of insulin resistance, which induces ß cell proliferation, Dhps deletion caused alterations in proteins required for mRNA translation and protein secretion, reduced production of the cell cycle molecule cyclin D2, impaired ß cell proliferation, and induced overt diabetes. We found that hypusine biosynthesis was downstream of protein kinase C-ζ and was required for c-Myc-induced proliferation. Our studies reveal a requirement for DHPS in ß cells to link polyamines to mRNA translation to effect facultative cellular proliferation and glucose homeostasis.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Lisina/análogos & derivados , Fatores de Iniciação de Peptídeos/metabolismo , Poliaminas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Idoso , Alelos , Animais , Proliferação de Células , Cruzamentos Genéticos , Ciclina D2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Feminino , Deleção de Genes , Homeostase , Humanos , Lisina/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ornitina Descarboxilase/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
16.
Transl Res ; 213: 90-99, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31442418

RESUMO

We recently described the persistence of detectable serum proinsulin in a large majority of individuals with longstanding type 1 diabetes (T1D), including individuals with undetectable serum C-peptide. Here, we sought to further explore the mechanistic etiologies of persistent proinsulin secretion in T1D at the level of the islet, using tissues obtained from human donors. Immunostaining for proinsulin and insulin was performed on human pancreatic sections from the Network for Pancreatic Organ Donors with Diabetes (nPOD) collection (n = 24). Differential proinsulin processing enzyme expression was analyzed using mass spectrometry analysis of human islets isolated from pancreatic sections with laser capture microdissection (n = 6). Proinsulin processing enzyme mRNA levels were assessed using quantitative real-time PCR in isolated human islets (n = 10) treated with or without inflammatory cytokines. Compared to nondiabetic controls, immunostaining among a subset (4/9) of insulin positive T1D donor islets revealed increased numbers of cells with proinsulin-enriched, insulin-poor staining. T1D donor islets also exhibited increased proinsulin fluorescence intensity relative to insulin fluorescence intensity. Laser capture microdissection followed by mass spectrometry revealed reductions in the proinsulin processing enzymes prohormone convertase 1/3 (PC1/3) and carboxypeptidase E (CPE) in T1D donors. Twenty-four hour treatment of human islets with inflammatory cytokines reduced mRNA expression of the processing enzymes PC1/3, PC2, and CPE. Taken together, these data provide new mechanistic insight into altered proinsulin processing in long-duration T1D and suggest that reduced ß cell prohormone processing is associated with proinflammatory cytokine-induced reductions in proinsulin processing enzyme expression.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Proinsulina/metabolismo , Adulto , Feminino , Humanos , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
Am J Hum Genet ; 104(2): 287-298, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661771

RESUMO

Hypusine is formed post-translationally from lysine and is found in a single cellular protein, eukaryotic translation initiation factor-5A (eIF5A), and its homolog eIF5A2. Biosynthesis of hypusine is a two-step reaction involving the enzymes deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). eIF5A is highly conserved throughout eukaryotic evolution and plays a role in mRNA translation, cellular proliferation, cellular differentiation, and inflammation. DHPS is also highly conserved and is essential for life, as Dhps-null mice are embryonic lethal. Using exome sequencing, we identified rare biallelic, recurrent, predicted likely pathogenic variants in DHPS segregating with disease in five affected individuals from four unrelated families. These individuals have similar neurodevelopmental features that include global developmental delay and seizures. Two of four affected females have short stature. All five affected individuals share a recurrent missense variant (c.518A>G [p.Asn173Ser]) in trans with a likely gene disrupting variant (c.1014+1G>A, c.912_917delTTACAT [p.Tyr305_Ile306del], or c.1A>G [p.Met1?]). cDNA studies demonstrated that the c.1014+1G>A variant causes aberrant splicing. Recombinant DHPS enzyme harboring either the p.Asn173Ser or p.Tyr305_Ile306del variant showed reduced (20%) or absent in vitro activity, respectively. We co-transfected constructs overexpressing HA-tagged DHPS (wild-type or mutant) and GFP-tagged eIF5A into HEK293T cells to determine the effect of these variants on hypusine biosynthesis and observed that the p.Tyr305_Ile306del and p.Asn173Ser variants resulted in reduced hypusination of eIF5A compared to wild-type DHPS enzyme. Our data suggest that rare biallelic variants in DHPS result in reduced enzyme activity that limits the hypusination of eIF5A and are associated with a neurodevelopmental disorder.


Assuntos
Genes Recessivos/genética , Lisina/análogos & derivados , Mutação , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Alelos , Sequência de Aminoácidos , Criança , Pré-Escolar , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Feminino , Haplótipos , Humanos , Lisina/biossíntese , Masculino , Erros Inatos do Metabolismo/enzimologia , Erros Inatos do Metabolismo/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Linhagem , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Convulsões/enzimologia , Convulsões/genética , Adulto Jovem , Fator de Iniciação de Tradução Eucariótico 5A
19.
Diabetes Care ; 42(2): 258-264, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30530850

RESUMO

OBJECTIVE: Abnormally elevated proinsulin secretion has been reported in type 2 and early type 1 diabetes when significant C-peptide is present. We questioned whether individuals with long-standing type 1 diabetes and low or absent C-peptide secretory capacity retained the ability to make proinsulin. RESEARCH DESIGN AND METHODS: C-peptide and proinsulin were measured in fasting and stimulated sera from 319 subjects with long-standing type 1 diabetes (≥3 years) and 12 control subjects without diabetes. We considered three categories of stimulated C-peptide: 1) C-peptide positive, with high stimulated values ≥0.2 nmol/L; 2) C-peptide positive, with low stimulated values ≥0.017 but <0.2 nmol/L; and 3) C-peptide <0.017 nmol/L. Longitudinal samples were analyzed from C-peptide-positive subjects with diabetes after 1, 2, and 4 years. RESULTS: Of individuals with long-standing type 1 diabetes, 95.9% had detectable serum proinsulin (>3.1 pmol/L), while 89.9% of participants with stimulated C-peptide values below the limit of detection (<0.017 nmol/L; n = 99) had measurable proinsulin. Proinsulin levels remained stable over 4 years of follow-up, while C-peptide decreased slowly during longitudinal analysis. Correlations between proinsulin with C-peptide and mixed-meal stimulation of proinsulin were found only in subjects with high stimulated C-peptide values (≥0.2 nmol/L). Specifically, increases in proinsulin with mixed-meal stimulation were present only in the group with high stimulated C-peptide values, with no increases observed among subjects with low or undetectable (<0.017 nmol/L) residual C-peptide. CONCLUSIONS: In individuals with long-duration type 1 diabetes, the ability to secrete proinsulin persists, even in those with undetectable serum C-peptide.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Proinsulina/metabolismo , Adolescente , Adulto , Peptídeo C/sangue , Estudos de Coortes , Diabetes Mellitus Tipo 1/sangue , Jejum/metabolismo , Feminino , Humanos , Insulina/sangue , Masculino , Refeições , Pessoa de Meia-Idade , Proinsulina/sangue , Fatores de Tempo , Adulto Jovem
20.
Diabetes Obes Metab ; 20(8): 1859-1867, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29569324

RESUMO

AIMS: Our current understanding of the pathogenesis of type 1 diabetes (T1D) arose, in large part, from studies using the non-obese diabetic (NOD) mouse model. In the present study, we chose a human-focused method to investigate T1D disease mechanisms and potential targets for therapeutic intervention by directly analysing human donor pancreatic islets from individuals with T1D. MATERIALS AND METHODS: We obtained islets from a young individual with T1D for 3 years and from an older individual with T1D for 27 years and performed unbiased functional genomic analysis by high-depth RNA sequencing; the T1D islets were compared with islets isolated from 3 non-diabetic donors. RESULTS: The islets procured from these T1D donors represent a unique opportunity to identify gene expression changes in islets after significantly different disease duration. Data analysis identified several inflammatory pathways up-regulated in short-duration disease, which notably included many components of innate immunity. As proof of concept for translation, one of the pathways, governed by IL-23(p19), was selected for further study in NOD mice because of ongoing human trials of biologics against this target for different indications. A mouse monoclonal antibody directed against IL-23(p19) when administered to NOD mice resulted in a significant reduction in incidence of diabetes. CONCLUSION: While the sample size for this study is small, our data demonstrate that the direct analysis of human islets provides a greater understanding of human disease. These data, together with the analysis of an expanded cohort to be obtained by future collaborative efforts, might result in the identification of promising novel targets for translation into effective therapeutic interventions for human T1D, with the added benefit of repurposing known biologicals for use in different indications.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Regulação da Expressão Gênica , Ilhotas Pancreáticas/metabolismo , Adulto , Animais , Anticorpos Monoclonais/uso terapêutico , Cadáver , Criança , Análise por Conglomerados , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 1/prevenção & controle , Progressão da Doença , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Subunidade p19 da Interleucina-23/antagonistas & inibidores , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Masculino , Camundongos Endogâmicos NOD , Estudo de Prova de Conceito , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...