Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Can J Cardiol ; 40(8): 1468-1482, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759726

RESUMO

Bedrest as an experimental paradigm or as an in-patient stay for medical reasons has negative consequences for cardiovascular health. The effects of severe inactivity parallel many of the changes experienced with natural aging but over a much shorter duration. Cardiac function is reduced, arteries stiffen, neural reflex responses are impaired, and metabolic and oxidative stress responses impose burden on the heart and vascular systems. The effect of these changes is revealed in studies of integrative function. Aerobic fitness progressively deteriorates with bedrest and tolerance of upright posture is rapidly impaired. In this review we consider the similarities of aging and bedrest-induced cardiovascular deconditioning. We concur with many recent clinical recommendations that early and regular mobility with upright posture will reduce likelihood of hospital-associated disability related to bedrest.


Assuntos
Repouso em Cama , Humanos , Repouso em Cama/efeitos adversos , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/etiologia , Senilidade Prematura/fisiopatologia , Senilidade Prematura/etiologia , Descondicionamento Cardiovascular/fisiologia , Envelhecimento/fisiologia
2.
JBMR Plus ; 7(7): e10756, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37457881

RESUMO

Human skeletal hemodynamics remain understudied. Neither assessments in weight-bearing bones during walking nor following periods of immobility exist, despite knowledge of altered nutrient-artery characteristics after short-duration unloading in rodents. We studied 12 older adults (8 females, aged 59 ± 3 years) who participated in ambulatory near-infrared spectroscopy (NIRS) assessments of tibial hemodynamics before (PRE) and after (POST) 14 days of head-down bed rest (HDBR), with most performing daily resistance and aerobic exercise countermeasures during HDBR. Continual simultaneous NIRS recordings were acquired over the proximal anteromedial tibial prominence of the right lower leg and ipsilateral lateral head of the gastrocnemius muscle during supine rest, walking, and standing. During 10 minutes of walking, desaturation kinetics in the tibia were slower (time to 95% nadir values 125.4 ± 56.8 s versus 55.0 ± 30.1 s, p = 0.0014). Tibial tissue saturation index (TSI) immediately fell (-9.9 ± 4.55) and did not completely recover by the end of 10 minutes of walking (-7.4 ± 6.7%, p = 0.027). Upon standing, total hemoglobin (tHb) kinetics were faster in the tibia (p < 0.0001), whereas HDBR resulted in faster oxygenated hemoglogin (O2Hb) kinetics in both tissues (p = 0.039). After the walk-to-stand transition, changes in O2Hb (p = 0.0022) and tHb (p = 0.0047) were attenuated in the tibia alone after bed rest. Comparisons of NIRS-derived variables during ambulation and changes in posture revealed potentially deleterious adaptations of feed vessels after HDBR. We identify important and novel tibial hemodynamics in humans during ambulation before and after bed rest, necessitating further investigation. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

3.
Am J Physiol Regul Integr Comp Physiol ; 325(2): R107-R119, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184226

RESUMO

Prolonged bedrest provokes orthostatic hypotension and intolerance of upright posture. Limited data are available on the cardiovascular responses of older adults to head-up tilt following bedrest, with no studies examining the potential benefits of exercise to mitigate intolerance in this age group. This randomized controlled trial of head-down bedrest (HDBR) in 55- to 65-yr-old men and women investigated if exercise could avert post-HDBR orthostatic intolerance. Twenty-two healthy older adults (11 female) underwent a strict 14-day HDBR and were assigned to either an exercise (EX) or control (CON) group. The exercise intervention included high-intensity, aerobic, and resistance exercises. Head-up tilt-testing to a maximum of 15 minutes was performed at baseline (Pre-Bedrest) and immediately after HDBR (R1), as well as 6 days (R6) and 4 weeks (R4wk) later. At Pre-Bedrest, three participants did not complete the full 15 minutes of tilt. At R1, 18 did not finish, with no difference in tilt end time between CON (422 ± 287 s) and EX (409 ± 346 s). No differences between CON and EX were observed at R6 or R4wk. At R1, just 1 participant self-terminated the test with symptoms, while 12 others reported symptoms only after physiological test termination criteria were reached. Finishers on R1 protected arterial pressure with higher total peripheral resistance relative to Pre-Bedrest. Cerebral blood velocity decreased linearly with reductions in arterial pressure, end-tidal CO2, and cardiac output. High-intensity interval exercise did not benefit post-HDBR orthostatic tolerance in older adults. Multiple factors were associated with the reduction in cerebral blood velocity leading to intolerance.


Assuntos
Hipotensão Ortostática , Intolerância Ortostática , Masculino , Humanos , Feminino , Idoso , Intolerância Ortostática/diagnóstico , Intolerância Ortostática/prevenção & controle , Repouso em Cama/efeitos adversos , Decúbito Inclinado com Rebaixamento da Cabeça/efeitos adversos , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Teste da Mesa Inclinada , Exercício Físico , Pressão Sanguínea , Hipotensão Ortostática/diagnóstico , Hipotensão Ortostática/prevenção & controle , Frequência Cardíaca
4.
J Appl Physiol (1985) ; 134(4): 1022-1031, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36927144

RESUMO

Cardiorespiratory fitness declines with age and this decline can be accelerated by inactivity and bed rest. Recovery of fitness is possible, but the timeline in 55- to 65-yr-old adults is unknown. Furthermore, the effectiveness of exercise to prevent deconditioning during bed rest is unexplored in this age group. Twenty-two adults (11 women, 59 ± 3 yr) completed 2 wk of strict 6° head-down bed rest (HDBR). Half of the participants performed approximately 1 h of daily exercises, including high-intensity interval cycling, aerobic cycling, and upper- and lower-body resistance training, whereas control participants were inactive. Step-incremental cycling tests to exhaustion were conducted pre-HDBR and at three times during the recovery phase (day 1 or 2, day 6, and 4 wk) to assess peak oxygen uptake (V̇o2). Peak V̇o2 was reduced in the control group throughout the first 6 days of recovery, but did return to pre-HDBR levels by the 4-wk recovery time point (interaction: P = 0.002). In the exercise group, peak V̇o2 was not different at any time point during recovery from pre-HDBR. Ventilatory threshold V̇o2 (interaction: P = 0.002) and heart rate at 15 W (interaction: P = 0.055) mirrored the changes in peak V̇o2 in each respective group. Overall, this study showed that approximately 1 h of daily exercise effectively protected 55- to 65-yr-old adults' cardiorespiratory fitness during 2 wk of HDBR. HDBR without exercise countermeasures caused substantial reductions in cardiorespiratory fitness, but fitness recovered within 4 wk of resuming daily activities. These findings highlight the importance of physical activity in late middle-age adults.NEW & NOTEWORTHY We report the complete time-course of cardiorespiratory fitness recovery back to baseline levels following 2 wk of head-down bed rest in 55- to 65-yr-old adults and found that multimodal training, consisting of high-intensity interval, aerobic and resistive exercises, performed throughout the 2 wk of head-down bed rest prevented reductions in cardiorespiratory fitness.


Assuntos
Repouso em Cama , Aptidão Cardiorrespiratória , Pessoa de Meia-Idade , Humanos , Adulto , Feminino , Exercício Físico/fisiologia , Terapia por Exercício , Teste de Esforço
5.
Front Physiol ; 13: 928313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017336

RESUMO

Significant progress has been made in the development of countermeasures to attenuate the negative consequences of prolonged exposure to microgravity on astronauts' bodies. Deconditioning of several organ systems during flight includes losses to cardiorespiratory fitness, muscle mass, bone density and strength. Similar deconditioning also occurs during prolonged bedrest; any protracted time immobile or inactive, especially for unwell older adults (e.g., confined to hospital beds), can lead to similar detrimental health consequences. Due to limitations in physiological research in space, the six-degree head-down tilt bedrest protocol was developed as ground-based analogue to spaceflight. A variety of exercise countermeasures have been tested as interventions to limit detrimental changes and physiological deconditioning of the musculoskeletal and cardiovascular systems. The Canadian Institutes of Health Research and the Canadian Space Agency recently provided funding for research focused on Understanding the Health Impact of Inactivity to study the efficacy of exercise countermeasures in a 14-day randomized clinical trial of six-degree head-down tilt bedrest study in older adults aged 55-65 years old (BROA). Here we will describe the development of a multi-modality countermeasure protocol for the BROA campaign that includes upper- and lower-body resistance exercise and head-down tilt cycle ergometry (high-intensity interval and continuous aerobic exercise training). We provide reasoning for the choice of these modalities following review of the latest available information on exercise as a countermeasure for inactivity and spaceflight-related deconditioning. In summary, this paper sets out to review up-to-date exercise countermeasure research from spaceflight and head-down bedrest studies, whilst providing support for the proposed research countermeasure protocols developed for the bedrest study in older adults.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA