Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337869

RESUMO

Genetic diversity is fundamental for studying the complex architecture of the traits of agronomic importance, controlled by major and minor loci. Moreover, well-characterized germplasm collections are essential tools for dissecting and analyzing genetic and phenotypic diversity in crops. A panel of 360 entries, a subset of a larger collection maintained within the GenBank at CREA Bergamo, which includes the inbreds derived from traditional Italian maize open-pollinated (OP) varieties and advanced breeding ones (Elite Inbreds), was analyzed to identify SNP markers using the tGBS® genotyping-by-sequencing technology. A total of 797,368 SNPs were found during the initial analysis. Imputation and filtering processes were carried out based on the percentage of missing data, redundant markers, and rarest allele frequencies, resulting in a final dataset of 15,872 SNP markers for which a physical map position was identified. Using this dataset, the inbred panel was characterized for linkage disequilibrium (LD), genetic diversity, population structure, and genetic relationships. LD decay at a genome-wide level indicates that the collection is a suitable resource for association mapping. Population structure analyses, which were carried out with different clustering methods, showed stable grouping statistics for four groups, broadly corresponding to 'Insubria', 'Microsperma', and 'Scagliolino' genotypes, with a fourth group composed prevalently of elite accessions derived from Italian and US breeding programs. Based on these results, the CREA Italian maize collection, genetically characterized in this study, can be considered an important tool for the mapping and characterization of useful traits and associated loci/alleles, to be used in maize breeding programs.

2.
Plant Genome ; : e20413, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087443

RESUMO

Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a major wheat disease worldwide. A collection of 283 wild emmer wheat [Triticum turgidum L. subsp. dicoccoides (Körn. ex Asch. & Graebn.) Thell] accessions, representative of the entire Fertile Crescent region where wild emmer naturally occurs, was assembled, genotyped, and characterized for population structure, genetic diversity, and rate of linkage disequilibrium (LD) decay. Then, the collection was employed for mapping Pgt resistance genes, as a proof of concept of the effectiveness of genome-wide association studies in wild emmer. The collection was evaluated in controlled conditions for reaction to six common Pgt pathotypes (TPMKC, TTTTF, JRCQC, TRTTF, TTKSK/Ug99, and TKTTF). Most resistant accessions originated from the Southern Levant wild emmer lineage, with some showing a resistance reaction toward three to six tested races. Association analysis was conducted considering a 12K polymorphic single-nucleotide polymorphisms dataset, kinship relatedness between accessions, and population structure. Eleven significant marker-trait associations (MTA) were identified across the genome, which explained from 17% to up to 49% of phenotypic variance with an average 1.5 additive effect (based on the 1-9 scoring scale). The identified loci were either effective against single or multiple races. Some MTAs colocalized with known Pgt resistance genes, while others represent novel resistance loci useful for durum and bread wheat prebreeding. Candidate genes with an annotated function related to plant response to pathogens were identified at the regions linked to the resistance and defined according to the estimated small LD (about 126 kb), as typical of wild species.

3.
Genes (Basel) ; 14(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37761898

RESUMO

This Special Issue comprises a collection of eight peer-reviewed articles centered around the plant-pathogen interaction with the aim of proposing strategies that enhance plant resistance to pathogens and limit the damage to crop production, utilizing a multidisciplinary approach [...].


Assuntos
Micoses , Melhoramento Vegetal , Produtos Agrícolas/genética , Adaptação Psicológica , Genômica
4.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108285

RESUMO

The biotechnological approaches of transgenesis and the more recent eco-friendly new breeding techniques (NBTs), in particular, genome editing, offer useful strategies for genetic improvement of crops, and therefore, recently, they have been receiving increasingly more attention. The number of traits improved through transgenesis and genome editing technologies is growing, ranging from resistance to herbicides and insects to traits capable of coping with human population growth and climate change, such as nutritional quality or resistance to climatic stress and diseases. Research on both technologies has reached an advanced stage of development and, for many biotech crops, phenotypic evaluations in the open field are already underway. In addition, many approvals regarding main crops have been granted. Over time, there has been an increase in the areas cultivated with crops that have been improved through both approaches, but their use in various countries has been limited by legislative restrictions according to the different regulations applied which affect their cultivation, marketing, and use in human and animal nutrition. In the absence of specific legislation, there is an on-going public debate with favorable and unfavorable positions. This review offers an updated and in-depth discussion on these issues.


Assuntos
Edição de Genes , Melhoramento Vegetal , Animais , Humanos , Edição de Genes/métodos , Plantas Geneticamente Modificadas/genética , Melhoramento Vegetal/métodos , Produtos Agrícolas/genética , Técnicas de Transferência de Genes , Marketing
5.
Front Plant Sci ; 14: 1290643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235202

RESUMO

Rusts of the genus Puccinia are wheat pathogens. Stem (black; Sr), leaf (brown; Lr), and stripe (yellow; Yr) rust, caused by Puccinia graminis f. sp. tritici (Pgt), Puccinia triticina (Pt), and Puccinia striiformis f. sp. tritici (Pst), can occur singularly or in mixed infections and pose a threat to wheat production globally in terms of the wide dispersal of their urediniospores. The development of durable resistant cultivars is the most sustainable method for controlling them. Many resistance genes have been identified, characterized, genetically mapped, and cloned; several quantitative trait loci (QTLs) for resistance have also been described. However, few studies have considered resistance to all three rust pathogens in a given germplasm. A genome-wide association study (GWAS) was carried out to identify loci associated with resistance to the three rusts in a collection of 230 inbred lines of tetraploid wheat (128 of which were Triticum turgidum ssp. durum) genotyped with SNPs. The wheat panel was phenotyped in the field and subjected to growth chamber experiments across different countries (USA, Mexico, Morocco, Italy, and Spain); then, a mixed linear model (MLM) GWAS was performed. In total, 9, 34, and 5 QTLs were identified in the A and B genomes for resistance to Pgt, Pt, and Pst, respectively, at both the seedling and adult plant stages. Only one QTL on chromosome 4A was found to be effective against all three rusts at the seedling stage. Six QTLs conferring resistance to two rust species at the adult plant stage were mapped: three on chromosome 1B and one each on 5B, 7A, and 7B. Fifteen QTLs conferring seedling resistance to two rusts were mapped: five on chromosome 2B, three on 7B, two each on 5B and 6A, and one each on 1B, 2A, and 7A. Most of the QTLs identified were specific for a single rust species or race of a species. Candidate genes were identified within the confidence intervals of a QTL conferring resistance against at least two rust species by using the annotations of the durum (cv. 'Svevo') and wild emmer wheat ('Zavitan') reference genomes. The 22 identified loci conferring resistance to two or three rust species may be useful for breeding new and potentially durable resistant wheat cultivars.

6.
Genes (Basel) ; 13(10)2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36292678

RESUMO

Stem rinfectionust, caused by the fungus Puccinia graminis f. sp. tritici (Pgt), is one of the most devastating fungal diseases of durum and common wheat worldwide. The identification of sources of resistance and the validation of QTLs identified through genome-wide association studies is of paramount importance for reducing the losses caused by this disease to wheat grain yield and quality. Four segregating populations whose parents showed contrasting reactions to some Pgt races were assessed in the present study, and 14 QTLs were identified on chromosomes 3A, 4A, 6A, and 6B, with some regions in common between different segregating populations. Several QTLs were mapped to chromosomal regions coincident with previously mapped stem rust resistance loci; however, their reaction to different Pgt races suggest that novel genes or alleles could be present on chromosomes 3A and 6B. Putative candidate genes with a disease-related functional annotation have been identified in the QTL regions based on information available from the reference genome of durum cv. 'Svevo'.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Cromossomos de Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Basidiomycota/genética
8.
Plant Physiol Biochem ; 172: 48-55, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030365

RESUMO

Specialized plant metabolites (SPMs), traditionally referred to as 'secondary metabolites', are chemical compounds involved in a broad range of biological functions, including plant responses to abiotic and biotic stresses. Moreover, some of them have a role in end-product quality with potential health benefits in humans. For this reason, they became an important target of studies focusing on their mechanisms of action and use in crop breeding and management. In this review we summarize the specific role of SPMs in physiological processes and in plant resistance to abiotic and biotic stresses, and the different strategies to enhance their production/accumulation in plant tissues under stress, including genetic approaches (marker-assisted selection and biotechnological tools) and agronomic management (fertilizer applications, cultivation method and beneficial microorganisms). New crop management strategies based on the direct application of the most promising compounds in form of plant residuals or liquid formulations are also described.


Assuntos
Melhoramento Vegetal , Estresse Fisiológico , Fertilizantes , Plantas
9.
Front Plant Sci ; 13: 1106164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684759

RESUMO

Wild emmer wheat is an excellent reservoir of genetic variability that can be utilized to improve cultivated wheat to address the challenges of the expanding world population and climate change. Bearing this in mind, we have collected a panel of 263 wild emmer wheat (WEW) genotypes across the Fertile Crescent. The genotypes were grown in different locations and phenotyped for heading date. Genome-wide association mapping (GWAS) was carried out, and 16 SNPs were associated with the heading date. As the flowering time is controlled by photoperiod and vernalization, we sequenced the VRN1 gene, the most important of the vernalization response genes, to discover new alleles. Unlike most earlier attempts, which characterized known VRN1 alleles according to a partial promoter or intron sequences, we obtained full-length sequences of VRN-A1 and VRN-B1 genes in a panel of 95 wild emmer wheat from the Fertile Crescent and uncovered a significant sequence variation. Phylogenetic analysis of VRN-A1 and VRN-B1 haplotypes revealed their evolutionary relationships and geographic distribution in the Fertile Crescent region. The newly described alleles represent an attractive resource for durum and bread wheat improvement programs.

10.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063853

RESUMO

Plant diseases are responsible for substantial crop losses each year and affect food security and agricultural sustainability. The improvement of crop resistance to pathogens through breeding represents an environmentally sound method for managing disease and minimizing these losses. The challenge is to breed varieties with a stable and broad-spectrum resistance. Different approaches, from markers to recent genomic and 'post-genomic era' technologies, will be reviewed in order to contribute to a better understanding of the complexity of host-pathogen interactions and genes, including those with small phenotypic effects and mechanisms that underlie resistance. An efficient combination of these approaches is herein proposed as the basis to develop a successful breeding strategy to obtain resistant crop varieties that yield higher in increasing disease scenarios.


Assuntos
Produtos Agrícolas/genética , Resistência à Doença/genética , Genoma de Planta/genética , Doenças das Plantas/genética , Agricultura/métodos , Animais , Genes de Plantas/genética , Genômica/métodos , Interações Hospedeiro-Patógeno/genética , Humanos , Melhoramento Vegetal/métodos
11.
Molecules ; 26(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918886

RESUMO

Defatted seed meals of oleaginous Brassicaceae, such as Eruca sativa, and potato peel are excellent plant matrices to recover potentially useful biomolecules from industrial processes in a circular strategy perspective aiming at crop protection. These biomolecules, mainly glycoalkaloids and phenols for potato and glucosinolates for Brassicaceae, have been proven to be effective against microbes, fungi, nematodes, insects, and even parasitic plants. Their role in plant protection is overviewed, together with the molecular basis of their synthesis in plant, and the description of their mechanisms of action. Possible genetic and biotechnological strategies are presented to increase their content in plants. Genetic mapping and identification of closely linked molecular markers are useful to identify the loci/genes responsible for their accumulation and transfer them to elite cultivars in breeding programs. Biotechnological approaches can be used to modify their allelic sequence and enhance the accumulation of the bioactive compounds. How the global challenges, such as reducing agri-food waste and increasing sustainability and food safety, could be addressed through bioprotector applications are discussed here.


Assuntos
Brassicaceae/química , Proteção de Cultivos , Compostos Fitoquímicos/isolamento & purificação , Solanum tuberosum/química , Desenvolvimento Sustentável , Resíduos/análise
12.
Int J Mol Sci ; 19(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563213

RESUMO

Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a major biotic constraint to wheat production worldwide. Disease resistant cultivars are a sustainable means for the efficient control of this disease. To identify quantitative trait loci (QTLs) conferring resistance to stem rust at the seedling stage, an association mapping panel consisting of 230 tetraploid wheat accessions were evaluated for reaction to five Pgt races under greenhouse conditions. A high level of phenotypic variation was observed in the panel in response to all of the races, allowing for genome-wide association mapping of resistance QTLs in wild, landrace, and cultivated tetraploid wheats. Twenty-two resistance QTLs were identified, which were characterized by at least two marker-trait associations. Most of the identified resistance loci were coincident with previously identified rust resistance genes/QTLs; however, six regions detected on chromosomes 1B, 5A, 5B, 6B, and 7B may be novel. Availability of the reference genome sequence of wild emmer wheat accession Zavitan facilitated the search for candidate resistance genes in the regions where QTLs were identified, and many of them were annotated as NOD (nucleotide binding oligomerization domain)-like receptor (NLR) genes or genes related to broad spectrum resistance.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença , Locos de Características Quantitativas , Triticum/genética , Basidiomycota/patogenicidade , Cromossomos de Plantas/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Tetraploidia , Triticum/microbiologia
13.
Int J Genomics ; 2017: 6876393, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28845431

RESUMO

A segregating population of 136 recombinant inbred lines derived from a cross between the durum wheat cv. "Simeto" and the T. dicoccum accession "Molise Colli" was grown in soil and evaluated for a number of shoot and root morphological traits. A total of 17 quantitative trait loci (QTL) were identified for shoot dry weight, number of culms, and plant height and for root dry weight, volume, length, surface area, and number of forks and tips, on chromosomes 1B, 2A, 3A, 4B, 5B, 6A, 6B, and 7B. LODs were 2.1 to 21.6, with percent of explained phenotypic variability between 0.07 and 52. Three QTL were mapped to chromosome 4B, one of which corresponds to the Rht-B1 locus and has a large impact on both shoot and root traits (LOD 21.6). Other QTL that have specific effects on root morphological traits were also identified. Moreover, meta-QTL analysis was performed to compare the QTL identified in the "Simeto" × "Molise Colli" segregating population with those described in previous studies in wheat, with three novel QTL defined. Due to the complexity of phenotyping for root traits, further studies will be helpful to validate these regions as targets for breeding programs for optimization of root function for field performance.

14.
BMC Genomics ; 18(1): 122, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28143400

RESUMO

BACKGROUND: In plants carotenoids play an important role in the photosynthetic process and photo-oxidative protection, and are the substrate for the synthesis of abscisic acid and strigolactones. In addition to their protective role as antioxidants and precursors of vitamin A, in wheat carotenoids are important as they influence the colour (whiteness vs. yellowness) of the grain. Understanding the genetic basis of grain yellow pigments, and identifying associated markers provide the basis for improving wheat quality by molecular breeding. RESULTS: Twenty-four candidate genes involved in the biosynthesis and catabolism of carotenoid compounds have been identified in wheat by comparative genomics. Single nucleotide polymorphisms (SNPs) found in the coding sequences of 19 candidate genes allowed their chromosomal location and accurate map position on two reference consensus maps to be determined. The genome-wide association study based on genotyping a tetraploid wheat collection with 81,587 gene-associated SNPs validated quantitative trait loci (QTLs) previously detected in biparental populations and discovered new QTLs for grain colour-related traits. Ten carotenoid genes mapped in chromosome regions underlying pigment content QTLs indicating possible functional relationships between candidate genes and the trait. CONCLUSIONS: The availability of linked, candidate gene-based markers can facilitate breeding wheat cultivars with desirable levels of carotenoids. Identifying QTLs linked to carotenoid pigmentation can contribute to understanding genes underlying carotenoid accumulation in the wheat kernels. Together these outputs can be combined to exploit the genetic variability of colour-related traits for the nutritional and commercial improvement of wheat products.


Assuntos
Carotenoides/metabolismo , Pigmentação/genética , Pigmentos Biológicos/metabolismo , Triticum/genética , Triticum/metabolismo , Carotenoides/biossíntese , Mapeamento Cromossômico , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Redes e Vias Metabólicas , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/classificação
15.
Plant Genome ; 9(1)2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27898760

RESUMO

Transposable elements (TEs) account for more than 80% of the wheat genome. Although they represent a major obstacle for genomic studies, TEs are also a source of polymorphism and consequently of molecular markers such as insertion site-based polymorphism (ISBP) markers. Insertion site-based polymorphisms have been found to be a great source of genome-specific single-nucleotide polymorphism (SNPs) in the hexaploid wheat ( L.) genome. Here, we report on the development of a high-throughput SNP discovery approach based on sequence capture of ISBP markers. By applying this approach to the reference sequence of chromosome 3B from hexaploid wheat, we designed 39,077 SNPs that are evenly distributed along the chromosome. We demonstrate that these SNPs can be efficiently scored with the KASPar (Kompetitive allele-specific polymerase chain reaction) genotyping technology. Finally, through genetic diversity and genome-wide association studies, we also demonstrate that ISBP-derived SNPs can be used in marker-assisted breeding programs.


Assuntos
Genoma de Planta , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único/genética , Sequências Repetitivas de Ácido Nucleico/genética , Triticum/genética , Estudo de Associação Genômica Ampla , Genótipo , Triticum/classificação
16.
Int J Mol Sci ; 16(12): 30382-404, 2015 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-26703576

RESUMO

Durum wheat (Triticum turgidum (L.) subsp. turgidum (L.) convar. durum (Desf.)) is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C) applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: "Primadur", an elite cultivar with high yellow index, and "T1303", an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry) were carried out on immature (14 days after flowering) and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol) increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in "Primadur", with a general decrease in "T1303". Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways.


Assuntos
Grão Comestível/metabolismo , Resposta ao Choque Térmico , Metaboloma , Valor Nutritivo , Triticum/metabolismo , Grão Comestível/genética , Genótipo , Glicerol/metabolismo , Sacarose/metabolismo , Triticum/genética
17.
Plant Biotechnol J ; 13(5): 648-63, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25424506

RESUMO

Consensus linkage maps are important tools in crop genomics. We have assembled a high-density tetraploid wheat consensus map by integrating 13 data sets from independent biparental populations involving durum wheat cultivars (Triticum turgidum ssp. durum), cultivated emmer (T. turgidum ssp. dicoccum) and their ancestor (wild emmer, T. turgidum ssp. dicoccoides). The consensus map harboured 30 144 markers (including 26 626 SNPs and 791 SSRs) half of which were present in at least two component maps. The final map spanned 2631 cM of all 14 durum wheat chromosomes and, differently from the individual component maps, all markers fell within the 14 linkage groups. Marker density per genetic distance unit peaked at centromeric regions, likely due to a combination of low recombination rate in the centromeric regions and even gene distribution along the chromosomes. Comparisons with bread wheat indicated fewer regions with recombination suppression, making this consensus map valuable for mapping in the A and B genomes of both durum and bread wheat. Sequence similarity analysis allowed us to relate mapped gene-derived SNPs to chromosome-specific transcripts. Dense patterns of homeologous relationships have been established between the A- and B-genome maps and between nonsyntenic homeologous chromosome regions as well, the latter tracing to ancient translocation events. The gene-based homeologous relationships are valuable to infer the map location of homeologs of target loci/QTLs. Because most SNP and SSR markers were previously mapped in bread wheat, this consensus map will facilitate a more effective integration and exploitation of genes and QTL for wheat breeding purposes.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Genômica , Polimorfismo de Nucleotídeo Único/genética , Triticum/genética , Cruzamento , Mapeamento Cromossômico , Ligação Genética , Locos de Características Quantitativas/genética , Tetraploidia
18.
Mol Genet Genomics ; 290(3): 785-806, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25416422

RESUMO

Traits related to root architecture are of great importance for yield performance of crop species, although they remain poorly understood. The present study is aimed at identifying the genomic regions involved in the control of root morphological traits in durum wheat (Triticum durum Desf.). A set of 123 recombinant inbred lines derived from the durum wheat cross of cvs. 'Creso' × 'Pedroso' were grown hydroponically to two growth stages, and were phenotypically evaluated for a number of root traits. In addition, meta-(M)QTL analysis was performed that considered the results of other root traits studies in wheat, to compare with the 'Creso' × 'Pedroso' cross and to increase the QTL detection power. Eight quantitative trait loci (QTL) for traits related to root morphology were identified on chromosomes 1A, 1B, 2A, 3A, 6A and 6B in the 'Creso' × 'Pedroso' segregating population. Twenty-two MQTL that comprised from two to six individual QTL that had widely varying confidence intervals were found on 14 chromosomes. The data from the present study provide a detailed analysis of the genetic basis of morphological root traits in wheat. This study of the 'Creso' × 'Pedroso' durum-wheat population has revealed some QTL that had not been previously identified.


Assuntos
Mapeamento Cromossômico , Raízes de Plantas/genética , Locos de Características Quantitativas/genética , Triticum/genética , Hidroponia , Endogamia , Fenótipo , Raízes de Plantas/anatomia & histologia , Triticum/anatomia & histologia
19.
J Exp Bot ; 65(12): 3177-88, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24790112

RESUMO

A recombinant inbred durum wheat population was grown under three contrasting regimes: long days following vernalization (LDV), long days without vernalization (LD), and short days following vernalization (SDV). The length of several pre-anthesis stages and the number of leaves and the phyllochron were measured. Different groups of genes were involved in determining the phenology in the three treatments, as demonstrated by a quantitative trait locus (QTL) analysis. The length of the period required to reach the terminal spikelet stage was correlated with the time to anthesis only in the case of LDV- and LD-grown plants where the timing of anthesis depended on the final leaf number. However, for SDV-grown plants, anthesis date was more dependent on the length of the period between the terminal spikelet stage and anthesis and was independent of leaf number. The involvement of the phyllochron in determining the duration of pre-anthesis development was also treatment-dependent. QTL mapping of the various flowering time associated traits uncovered some novel loci (such as those associated with the phyllochron), in addition to confirming the presence of several well-established loci.


Assuntos
Variação Genética , Fotoperíodo , Folhas de Planta/crescimento & desenvolvimento , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento , Triticum/genética , Fenótipo , Folhas de Planta/genética , Estações do Ano
20.
Plant Physiol ; 158(2): 777-89, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22167118

RESUMO

Plants exploit ubiquitination to modulate the proteome with the final aim to ensure environmental adaptation and developmental plasticity. Ubiquitination targets are specifically driven to degradation through the action of E3 ubiquitin ligases. Genetic analyses have indicated wide functions of ubiquitination in plant life; nevertheless, despite the large number of predicted E3s, only a few of them have been characterized so far, and only a few ubiquitination targets are known. In this work, we characterized durum wheat (Triticum durum) RING Finger1 (TdRF1) as a durum wheat nuclear ubiquitin ligase. Moreover, its barley (Hordeum vulgare) homolog was shown to protect cells from dehydration stress. A protein network interacting with TdRF1 has been defined. The transcription factor WHEAT BEL1-TYPE HOMEODOMAIN1 (WBLH1) was degraded in a TdRF1-dependent manner through the 26S proteasome in vivo, the mitogen-activated protein kinase TdWNK5 [for Triticum durum WITH NO LYSINE (K)5] was able to phosphorylate TdRF1 in vitro, and the RING-finger protein WHEAT VIVIPAROUS-INTERACTING PROTEIN2 (WVIP2) was shown to have a strong E3 ligase activity. The genes coding for the TdRF1 interactors were all responsive to cold and/or dehydration stress, and a negative regulative function in dehydration tolerance was observed for the barley homolog of WVIP2. A role in the control of plant development was previously known, or predictable based on homology, for wheat BEL1-type homeodomain1(WBLH1). Thus, TdRF1 E3 ligase might act regulating the response to abiotic stress and remodeling plant development in response to environmental constraints.


Assuntos
Proteínas de Plantas/metabolismo , Triticum/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Western Blotting , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Fosforilação , Proteínas de Plantas/química , Ligação Proteica , Triticum/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...