Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytometry A ; 103(5): 362-367, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740883

RESUMO

The panel was developed and optimized for monitoring changes in homing capacity and functional diversity of human CD4+ conventional and regulatory T cell subsets. The analysis was based on expression of only surface markers in freshly isolated peripheral blood mononuclear cells (PBMCs) to reduce at minimum any alteration due to permeabilization or freezing/thawing procedures. We included markers to assess the distribution of naïve and memory populations based on the expression of CD45RA, CCR7, CD25, CD28 and CD95 in both conventional and regulatory T cells. The identification of major functional subsets was performed using CCR4, CCR6, CCR10, CXCR3 and CXCR5. Homing capacity of these subsets to skin, airway tract, gut and inflammatory lesions could finally be assessed with the markers CLA, CCR3, CCR5 and integrin ß7. The panel was tested on freshly isolated PBMCs from healthy donors and patients with allergic rhinitis or autoimmune disorders.


Assuntos
Leucócitos Mononucleares , Linfócitos T Reguladores , Humanos , Citometria de Fluxo/métodos , Subpopulações de Linfócitos T , Pele
2.
STAR Protoc ; 3(1): 101204, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35252886

RESUMO

To analyze immune cell populations accurately, a large number of Peripheral Blood Mononuclear Cells (PBMCs) must be obtained from blood samples. Traditional manual isolation and SepMateTM isolation of PBMCs consistently yield blood-stained plasma layers and overall low numbers of CD4+ and CD8+ cells. Here, we describe an optimized protocol, using PBS with EDTA to increase PBMC yield from pregnant patients. This protocol enables analysis of CD4+, CD8+, and Regulatory T Cells and is potentially applicable to any immune cell population. For complete details on the use and execution of this protocol, please refer to the SepMateTM website https://www.stemcell.com/products/brands/SepMateTM-pbmc-isolation.html.


Assuntos
Leucócitos Mononucleares , Leucócitos , Linfócitos T CD8-Positivos , Feminino , Congelamento , Humanos , Gravidez , Linfócitos T Reguladores
3.
Eur J Immunol ; 51(1): 39-55, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33275279

RESUMO

CD4+ CD25high CD127low/- FOXP3+ T regulatory cells are responsible for maintaining immune tolerance and controlling excessive immune responses. Treg cell use in pre-clinical animal models showed the huge therapeutic potential of these cells in immune-mediated diseases and laid the foundations for their applications in therapy in humans. Currently, there are several clinical trials utilizing the adoptive transfer of Treg cells to reduce the morbidity in autoimmune disorders, allogeneic HSC transplantation, and solid organ transplantation. However, a large part of them utilizes total Treg cells without distinction of their biological variability. Many studies on the heterogeneity of Treg cell population revealed distinct subsets with different functions in the control of the immune response and induction of peripheral tolerance. Some of these subsets also showed a role in controlling the general homeostasis of non-lymphoid tissues. All these Treg cell subsets and their peculiar properties can be therefore exploited to develop novel therapeutic approaches. This review describes these functionally distinct subsets, their phenotype, homing properties and functions in lymphoid and non-lymphoid tissues. In addition, we also discuss the limitations in using Treg cells as a cellular therapy and the strategies to enhance their efficacy.


Assuntos
Imunoterapia Adotiva/métodos , Linfócitos T Reguladores/classificação , Linfócitos T Reguladores/imunologia , Tecido Adiposo/citologia , Tecido Adiposo/imunologia , Aloenxertos , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Fatores de Transcrição Forkhead/imunologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Tolerância Imunológica , Camundongos , Modelos Imunológicos , Tolerância Periférica , Imunologia de Transplantes , Cicatrização/imunologia
4.
Oxid Med Cell Longev ; 2019: 8102936, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30838088

RESUMO

Hydrogen sulfide (H2S), a known inhibitor of cytochrome c oxidase (CcOX), plays a key signaling role in human (patho)physiology. H2S is synthesized endogenously and mainly metabolized by a mitochondrial sulfide-oxidizing pathway including sulfide:quinone oxidoreductase (SQR), whereby H2S-derived electrons are injected into the respiratory chain stimulating O2 consumption and ATP synthesis. Under hypoxic conditions, H2S has higher stability and is synthesized at higher levels with protective effects for the cell. Herein, working on SW480 colon cancer cells, we evaluated the effect of hypoxia on the ability of cells to metabolize H2S. The sulfide-oxidizing activity was assessed by high-resolution respirometry, measuring the stimulatory effect of sulfide on rotenone-inhibited cell respiration in the absence or presence of antimycin A. Compared to cells grown under normoxic conditions (air O2), cells exposed for 24 h to hypoxia (1% O2) displayed a 1.3-fold reduction in maximal sulfide-oxidizing activity and 2.7-fold lower basal O2 respiration. Based on citrate synthase activity assays, mitochondria of hypoxia-treated cells were 1.8-fold less abundant and displayed 1.4-fold higher maximal sulfide-oxidizing activity and 2.6-fold enrichment in SQR as evaluated by immunoblotting. We speculate that under hypoxic conditions mitochondria undergo these adaptive changes to protect cell respiration from H2S poisoning.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Humanos , Modelos Biológicos , Oxirredução , Consumo de Oxigênio , Quinona Redutases/metabolismo
5.
Mol Biochem Parasitol ; 206(1-2): 56-66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26672398

RESUMO

The microaerophilic protist Giardia intestinalis is the causative agent of giardiasis, one of the most common intestinal infectious diseases worldwide. The pathogen lacks not only respiratory terminal oxidases (being amitochondriate), but also several conventional antioxidant enzymes, including catalase, superoxide dismutase and glutathione peroxidase. In spite of this, since living attached to the mucosa of the proximal small intestine, the parasite should rely on an efficient antioxidant system to survive the oxidative and nitrosative stress conditions found in this tract of the human gut. Here, we review current knowledge on the antioxidant defence systems in G. intestinalis, focusing on the progress made over the last decade in the field. The relevance of this research and future perspectives are discussed.


Assuntos
Flavoproteínas/metabolismo , Giardia lamblia/metabolismo , Hemeproteínas/metabolismo , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Oxirredutases/metabolismo , Peroxirredoxinas/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Antioxidantes/metabolismo , Flavoproteínas/genética , Expressão Gênica , Giardia lamblia/genética , Giardia lamblia/patogenicidade , Giardíase/parasitologia , Giardíase/patologia , Hemeproteínas/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Complexos Multienzimáticos/genética , NADH NADPH Oxirredutases/genética , Oxirredução , Estresse Oxidativo , Oxirredutases/genética , Peroxirredoxinas/genética , Proteínas de Protozoários/genética
6.
Free Radic Biol Med ; 92: 152-162, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26698668

RESUMO

The effects of physiological oxygen tension on Nuclear Factor-E2-Related Factor 2 (Nrf2)-regulated redox signaling remain poorly understood. We report the first study of Nrf2-regulated signaling in human primary endothelial cells (EC) adapted long-term to physiological O2 (5%). Adaptation of EC to 5% O2 had minimal effects on cell ultrastructure, viability, basal redox status or HIF1-α expression. Affymetrix array profiling and subsequent qPCR/protein validation revealed that induction of select Nrf2 target genes, HO-1 and NQO1, was significantly attenuated in cells adapted to 5% O2, despite nuclear accumulation and DNA binding of Nrf2. Diminished HO-1 induction under 5% O2 was stimulus independent and reversible upon re-adaptation to air or silencing of the Nrf2 repressor Bach1, notably elevated under 5% O2. Induction of GSH-related genes xCT and GCLM were oxygen and Bach1-insensitive during long-term culture under 5% O2, providing the first evidence that genes related to GSH synthesis mediate protection afforded by Nrf2-Keap1 defense pathway in cells adapted to physiological O2 levels encountered in vivo.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Vasos Coronários/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Oxigênio/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Antioxidantes/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Veias/metabolismo
7.
Front Microbiol ; 6: 256, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25904901

RESUMO

Giardiasis is a common diarrheal disease worldwide caused by the protozoan parasite Giardia intestinalis. It is urgent to develop novel drugs to treat giardiasis, due to increasing clinical resistance to the gold standard drug metronidazole (MTZ). New potential antiparasitic compounds are usually tested for their killing efficacy against G. intestinalis under anaerobic conditions, in which MTZ is maximally effective. On the other hand, though commonly regarded as an 'anaerobic pathogen,' G. intestinalis is exposed to relatively high O2 levels in vivo, living attached to the mucosa of the proximal small intestine. It is thus important to test the effect of O2 when searching for novel potential antigiardial agents, as outlined in a previous study [Bahadur et al. (2014) Antimicrob. Agents Chemother. 58, 543]. Here, 45 novel chalcone derivatives with triazolyl-quinolone scaffold were synthesized, purified, and characterized by high resolution mass spectrometry, (1)H and (13)C nuclear magnetic resonance and infrared spectroscopy. Efficacy of the compounds against G. intestinalis trophozoites was tested under both anaerobic and microaerobic conditions, and selectivity was assessed in a counter-screen on human epithelial colorectal adenocarcinoma cells. MTZ was used as a positive control in the assays. All the tested compounds proved to be more effective against the parasite in the presence of O2, with the exception of MTZ that was less effective. Under anaerobiosis eighteen compounds were found to be as effective as MTZ or more (up to three to fourfold); the same compounds proved to be up to >100-fold more effective than MTZ under microaerobic conditions. Four of them represent potential candidates for the design of novel antigiardial drugs, being highly selective against Giardia trophozoites. This study further underlines the importance of taking O2 into account when testing novel potential antigiardial compounds.

8.
PLoS Negl Trop Dis ; 8(1): e2631, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416465

RESUMO

The microaerophilic protozoan parasite Giardia intestinalis, causative of one of the most common human intestinal diseases worldwide, infects the mucosa of the proximal small intestine, where it has to cope with O2 and nitric oxide (NO). Elucidating the antioxidant defense system of this pathogen lacking catalase and other conventional antioxidant enzymes is thus important to unveil novel potential drug targets. Enzymes metabolizing O2, NO and superoxide anion (O2 (-•)) have been recently reported for Giardia, but it is yet unknown how the parasite copes with H2O2 and peroxynitrite (ONOO(-)). Giardia encodes two yet uncharacterized 2-cys peroxiredoxins (Prxs), GiPrx1a and GiPrx1b. Peroxiredoxins are peroxidases implicated in virulence and drug resistance in several parasitic protozoa, able to protect from nitroxidative stress and repair oxidatively damaged molecules. GiPrx1a and a truncated form of GiPrx1b (deltaGiPrx1b) were expressed in Escherichia coli, purified and functionally characterized. Both Prxs effectively metabolize H2O2 and alkyl-hydroperoxides (cumyl- and tert-butyl-hydroperoxide) in the presence of NADPH and E. coli thioredoxin reductase/thioredoxin as the reducing system. Stopped-flow experiments show that both proteins in the reduced state react with ONOO(-) rapidly (k = 4×10(5) M(-1) s(-1) and 2×10(5) M(-1) s(-1) at 4°C, for GiPrx1a and deltaGiPrx1b, respectively). Consistent with a protective role against oxidative stress, expression of GiPrx1a (but not deltaGiPrx1b) is induced in parasitic cells exposed to air O2 for 24 h. Based on these results, GiPrx1a and deltaGiPrx1b are suggested to play an important role in the antioxidant defense of Giardia, possibly contributing to pathogenesis.


Assuntos
Giardia lamblia/enzimologia , Peroxirredoxinas/metabolismo , Animais , Derivados de Benzeno , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Giardia lamblia/genética , Peróxido de Hidrogênio/metabolismo , Cinética , NADP/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/isolamento & purificação , Ácido Peroxinitroso/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , terc-Butil Hidroperóxido
9.
Antimicrob Agents Chemother ; 58(1): 543-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24217695

RESUMO

Giardia intestinalis is the most frequent protozoan agent of intestinal diseases worldwide. Though commonly regarded as an anaerobic pathogen, it preferentially colonizes the fairly oxygen-rich mucosa of the proximal small intestine. Therefore, when testing new potential antigiardial drugs, O2 should be taken into account, since it also reduces the efficacy of metronidazole, the gold standard drug against giardiasis. In this study, 46 novel chalcones were synthesized by microwave-assisted Claisen-Schmidt condensation, purified, characterized by high-resolution mass spectrometry, (1)H and (13)C nuclear magnetic resonance, and infrared spectroscopy, and tested for their toxicity against G. intestinalis under standard anaerobic conditions. As a novel approach, compounds showing antigiardial activity under anaerobiosis were also assayed under microaerobic conditions, and their selectivity against parasitic cells was assessed in a counterscreen on human epithelial colorectal adenocarcinoma cells. Among the tested compounds, three [30(a), 31(e), and 33] were more effective in the presence of O2 than under anaerobic conditions and killed the parasite 2 to 4 times more efficiently than metronidazole under anaerobiosis. Two of them [30(a) and 31(e)] proved to be selective against parasitic cells, thus representing potential candidates for the design of novel antigiardial drugs. This study highlights the importance of testing new potential antigiardial agents not only under anaerobic conditions but also at low, more physiological O2 concentrations.


Assuntos
Antiprotozoários/efeitos adversos , Antiprotozoários/farmacologia , Chalconas/química , Chalconas/farmacologia , Giardia lamblia/efeitos dos fármacos , Piperazinas/química , Piperidinas/química , Antiprotozoários/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Chalconas/efeitos adversos , Humanos , Piperazina
11.
J Alzheimers Dis ; 37(4): 747-58, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23948918

RESUMO

The 7WD4 and 7PA2 cell lines, widely used as cellular models for Alzheimer's disease (AD), have been used to investigate the effects of amyloid-ß protein precursor overexpression and amyloid-ß (Aß) oligomer accumulation on mitochondrial function. Under standard culture conditions, both cell lines, compared to Chinese hamster ovary (CHO) control cells, displayed an ~5% decrease of O2 respiration as sustained by endogenous substrates. Functional impairment of the respiratory chain was found distributed among the protein complexes, though more evident at the level of complex I and complex IV. Measurements of ATP showed that its synthesis by oxidative phosphorylation is decreased in 7WD4 and 7PA2 cells by ~25%, this loss being partly compensated by glycolysis (Warburg effect). Compensation proved to be more efficient in 7WD4 than in 7PA2 cells, the latter cell line displaying the highest reactive oxygen species production. The strongest deficit was observed in mitochondrial membrane potential that is almost 40% and 60% lower in 7WD4 and 7PA2 cells, respectively, in comparison to CHO controls. All functional parameters point to a severe bioenergetic impairment of the AD cells, with the extent of mitochondrial dysfunction being correlated to the accumulation of Aß peptides and oligomers.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/fisiologia , Mitocôndrias/metabolismo , Consumo de Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Humanos , Mitocôndrias/patologia
12.
Int J Mol Sci ; 14(6): 11259-76, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23759982

RESUMO

Extending our previous observations, we have shown on HaCat cells that melatonin, at ~10-9 M concentration, transiently raises not only the expression of the neuronal nitric oxide synthase (nNOS) mRNA, but also the nNOS protein synthesis and the nitric oxide oxidation products, nitrite and nitrate. Interestingly, from the cell bioenergetic point of view, the activated NO-related chemistry induces a mild decrease of the oxidative phosphorylation (OXPHOS) efficiency, paralleled by a depression of the mitochondrial membrane potential. The OXPHOS depression is apparently balanced by glycolysis. The mitochondrial effects described have been detected only at nanomolar concentration of melatonin and within a time window of a few hours' incubation; both findings compatible with the melatonin circadian cycle.


Assuntos
Ritmo Circadiano , Melatonina/metabolismo , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Trifosfato de Adenosina/biossíntese , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Lactatos/metabolismo , Melatonina/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Óxido Nítrico Sintase Tipo I/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Fatores de Tempo
13.
FEBS Lett ; 587(14): 2214-8, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23727202

RESUMO

Cytochrome bd oxygen reductase from Escherichia coli has three hemes, b558, b595 and d. We found that the enzyme, as-prepared or in turnover with O2, rapidly decomposes H2O2 with formation of approximately half a mole of O2 per mole of H2O2. Such catalase activity vanishes upon cytochrome bd reduction, does not compete with the oxygen-reductase activity, is insensitive to NO, CO, antimycin-A and N-ethylmaleimide (NEM), but is inhibited by cyanide (Ki ~2.5µM) and azide. The activity, possibly associated with heme-b595, was also observed in catalase-deficient E. coli cells following cytochrome bd over-expression suggesting a protective role against oxidative stress in vivo.


Assuntos
Catalase/química , Citocromos/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Estresse Oxidativo , Oxirredutases/química , Animais , Bovinos , Grupo dos Citocromos b , Citocromos/antagonistas & inibidores , Ditiotreitol/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inibidores , Peróxido de Hidrogênio/química , Hidroquinonas/química , Cinética , NAD/química , NAD(P)H Desidrogenase (Quinona)/química , Oxidantes/química , Oxirredutases/antagonistas & inibidores , Oxigênio/química , Ratos , Substâncias Redutoras/química , Cianeto de Sódio/química
14.
Int J Cell Biol ; 2012: 571067, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22811713

RESUMO

Nitric oxide (NO) reacts with Complex I and cytochrome c oxidase (CcOX, Complex IV), inducing detrimental or cytoprotective effects. Two alternative reaction pathways (PWs) have been described whereby NO reacts with CcOX, producing either a relatively labile nitrite-bound derivative (CcOX-NO(2) (-), PW1) or a more stable nitrosyl-derivative (CcOX-NO, PW2). The two derivatives are both inhibited, displaying different persistency and O(2) competitiveness. In the mitochondrion, during turnover with O(2), one pathway prevails over the other one depending on NO, cytochrome c(2+) and O(2) concentration. High cytochrome c(2+), and low O(2) proved to be crucial in favoring CcOX nitrosylation, whereas under-standard cell-culture conditions formation of the nitrite derivative prevails. All together, these findings suggest that NO can modulate physiologically the mitochondrial respiratory/OXPHOS efficiency, eventually being converted to nitrite by CcOX, without cell detrimental effects. It is worthy to point out that nitrite, far from being a simple oxidation byproduct, represents a source of NO particularly important in view of the NO cell homeostasis, the NO production depends on the NO synthases whose activity is controlled by different stimuli/effectors; relevant to its bioavailability, NO is also produced by recycling cell/body nitrite. Bioenergetic parameters, such as mitochondrial ΔΨ, lactate, and ATP production, have been assayed in several cell lines, in the presence of endogenous or exogenous NO and the evidence collected suggests a crucial interplay between CcOX and NO with important energetic implications.

15.
Adv Exp Med Biol ; 942: 75-92, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22399419

RESUMO

Cell respiration is controlled by nitric oxide (NO) reacting with respiratory chain complexes, particularly with Complex I and IV. The functional implication of these reactions is different owing to involvement of different mechanisms. Inhibition of complex IV is rapid (milliseconds) and reversible, and occurs at nanomolar NO concentrations, whereas inhibition of complex I occurs after a prolonged exposure to higher NO concentrations. The inhibition of Complex I involves the reversible S-nitrosation of a key cysteine residue on the ND3 subunit. The reaction of NO with cytochrome c oxidase (CcOX) directly involves the active site of the enzyme: two mechanisms have been described leading to formation of either a relatively stable nitrosyl-derivative (CcOX-NO) or a more labile nitrite-derivative (CcOX-NO (2) (-) ). Both adducts are inhibited, though with different K(I); one mechanism prevails on the other depending on the turnover conditions and availability of substrates, cytochrome c and O(2). SH-SY5Y neuroblastoma cells or lymphoid cells, cultured under standard O(2) tension, proved to follow the mechanism leading to degradation of NO to nitrite. Formation of CcOX-NO occurred upon rising the electron flux level at this site, artificially or in the presence of higher amounts of endogenous reduced cytochrome c. Taken together, the observations suggest that the expression level of mitochondrial cytochrome c may be crucial to determine the respiratory chain NO inhibition pathway prevailing in vivo under nitrosative stress conditions. The putative patho-physiological relevance of the interaction between NO and the respiratory complexes is addressed.


Assuntos
Mitocôndrias/fisiologia , Óxido Nítrico/fisiologia , Animais , Humanos
16.
IUBMB Life ; 64(3): 251-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22271455

RESUMO

A novel role of melatonin was unveiled, using immortalized human keratinocyte cells (HaCaT) as a model system. Within a time window compatible with its circadian rhythm, melatonin at nanomolar concentration raised both the expression level of the neuronal nitric oxide synthase mRNA and the nitric oxide oxidation products, nitrite and nitrate. On the same time scale, a depression of the mitochondrial membrane potential was detected together with a decrease of the oxidative phosphorylation efficiency, compensated by glycolysis as testified by an increased production of lactate. The melatonin concentration, ∼ nmolar, inducing the bioenergetic effects and their time dependence, both suggest that the observed nitric oxide-induced mitochondrial changes might play a role in the metabolic pathways characterizing the circadian melatonin chemistry.


Assuntos
Antioxidantes/farmacologia , Metabolismo Energético/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/enzimologia , Melatonina/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Trifosfato de Adenosina/metabolismo , Western Blotting , Células Cultivadas , Humanos , Queratinócitos/citologia , Ácido Láctico/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Nitritos/metabolismo , Oxirredução , Fosforilação Oxidativa , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
17.
Biochim Biophys Acta ; 1817(4): 610-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21939634

RESUMO

BACKGROUND: The reactions between Complex IV (cytochrome c oxidase, CcOX) and nitric oxide (NO) were described in the early 60's. The perception, however, that NO could be responsible for physiological or pathological effects, including those on mitochondria, lags behind the 80's, when the identity of the endothelial derived relaxing factor (EDRF) and NO synthesis by the NO synthases were discovered. NO controls mitochondrial respiration, and cytotoxic as well as cytoprotective effects have been described. The depression of OXPHOS ATP synthesis has been observed, attributed to the inhibition of mitochondrial Complex I and IV particularly, found responsible of major effects. SCOPE OF REVIEW: The review is focused on CcOX and NO with some hints about pathophysiological implications. The reactions of interest are reviewed, with special attention to the molecular mechanisms underlying the effects of NO observed on cytochrome c oxidase, particularly during turnover with oxygen and reductants. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE: The NO inhibition of CcOX is rapid and reversible and may occur in competition with oxygen. Inhibition takes place following two pathways leading to formation of either a relatively stable nitrosyl-derivative (CcOX-NO) of the enzyme reduced, or a more labile nitrite-derivative (CcOX-NO(2)(-)) of the enzyme oxidized, and during turnover. The pathway that prevails depends on the turnover conditions and concentration of NO and physiological substrates, cytochrome c and O(2). All evidence suggests that these parameters are crucial in determining the CcOX vs NO reaction pathway prevailing in vivo, with interesting physiological and pathological consequences for cells.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Animais , Respiração Celular/fisiologia , Citocromos c/metabolismo , Humanos , Modelos Biológicos , Oxirredução
18.
FEBS Lett ; 586(5): 622-9, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21821033

RESUMO

Experimental evidence suggests that the prokaryotic respiratory cytochrome bd quinol oxidase is responsible for both bioenergetic functions and bacterial adaptation to different stress conditions. The enzyme, phylogenetically unrelated to the extensively studied heme-copper terminal oxidases, is found in many commensal and pathogenic bacteria. Here, we review current knowledge on the catalytic intermediates of cytochrome bd and their reactivity towards nitric oxide (NO). Available information is discussed in the light of the hypothesis that, owing to its high NO dissociation rate, cytochrome bd confers resistance to NO-stress, thereby providing a strategy for bacterial pathogens to evade the NO-mediated host immune attack.


Assuntos
Citocromos/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/metabolismo , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Biocatálise , Grupo dos Citocromos b , Metabolismo Energético/fisiologia , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Modelos Biológicos , Subunidades Proteicas/metabolismo
19.
Free Radic Biol Med ; 51(8): 1567-74, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21839165

RESUMO

Unlike superoxide dismutases (SODs), superoxide reductases (SORs) eliminate superoxide anion (O(2)(•-)) not through its dismutation, but via reduction to hydrogen peroxide (H(2)O(2)) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR(Gi)) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T(final)) with Fe(3+) ligated to glutamate or hydroxide depending on pH (apparent pK(a)=8.7). Although showing negligible SOD activity, reduced SOR(Gi) reacts with O(2)(•-) with a pH-independent second-order rate constant k(1)=1.0×10(9) M(-1) s(-1) and yields the ferric-(hydro)peroxo intermediate T(1); this in turn rapidly decays to the T(final) state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR(Gi) is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.


Assuntos
Giardia lamblia/metabolismo , Giardíase/metabolismo , Oxirredutases/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/metabolismo , Células Cultivadas , Clonagem Molecular , Eucariotos , Giardia lamblia/genética , Giardia lamblia/patogenicidade , Giardíase/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Intestino Delgado/metabolismo , Intestino Delgado/parasitologia , Irídio/metabolismo , Ferro/química , Ferro/metabolismo , Oxirredutases/genética , Filogenia , Proteínas de Protozoários/genética , Radiólise de Impulso , Proteínas Recombinantes/genética , Espectrofotometria , Superóxido Dismutase/metabolismo
20.
IUBMB Life ; 63(1): 21-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21280173

RESUMO

Giardia intestinalis is the microaerophilic protozoon causing giardiasis, a common infectious intestinal disease. Giardia possesses an O(2) -scavenging activity likely essential for survival in the host. We report that Giardia trophozoites express the O(2) -detoxifying flavodiiron protein (FDP), detected by immunoblotting, and are able to reduce O(2) to H(2) O rapidly (∼3 µM O(2) × min × 10(6) cells at 37 °C) and with high affinity (C(50) = 3.4 ± 0.7 µM O(2)). Following a short-term (minutes) exposure to H(2) O(2) ≥ 100 µM, the O(2) consumption by the parasites is irreversibly impaired, and the FDP undergoes a degradation, prevented by the proteasome-inhibitor MG132. Instead, H(2) O(2) does not cause degradation or inactivation of the isolated FDP. On the basis of the elevated susceptibility of Giardia to oxidative stress, we hypothesize that the parasite preferentially colonizes the small intestine since, compared with colon, it is characterized by a greater capacity for redox buffering and a lower propensity to oxidative stress.


Assuntos
Giardia lamblia/fisiologia , Intestino Delgado/parasitologia , Estresse Oxidativo , Animais , Peróxido de Hidrogênio/metabolismo , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...