Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Neurotherapeutics ; 21(2): e00318, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233267

RESUMO

Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including congenital myasthenic syndromes (CMS). Germline mutations in CHRNE encoding the acetylcholine receptor (AChR) ε subunit are the most common cause of CMS. An active form of vitamin D, calcitriol, binds to vitamin D receptor (VDR) and regulates gene expressions. We found that calcitriol enhanced MuSK phosphorylation, AChR clustering, and myotube twitching in co-cultured C2C12 myotubes and NSC34 motor neurons. RNA-seq analysis of co-cultured cells showed that calcitriol increased the expressions of Rspo2, Rapsn, and Dusp6. ChIP-seq of VDR revealed that VDR binds to a region approximately 15 â€‹kbp upstream to Rspo2. Biallelic deletion of the VDR-binding site of Rspo2 by CRISPR/Cas9 in C2C12 myoblasts/myotubes nullified the calcitriol-mediated induction of Rspo2 expression and MuSK phosphorylation. We generated Chrne knockout (Chrne KO) mouse by CRISPR/Cas9. Intraperitoneal administration of calcitriol markedly increased the number of AChR clusters, as well as the area, the intensity, and the number of synaptophysin-positive synaptic vesicles, in Chrne KO mice. In addition, calcitriol ameliorated motor deficits and prolonged survival of Chrne KO mice. In the skeletal muscle, calcitriol increased the gene expressions of Rspo2, Rapsn, and Dusp6. We propose that calcitriol is a potential therapeutic agent for CMS and other diseases with defective neuromuscular signal transmission.


Assuntos
Síndromes Miastênicas Congênitas , Animais , Camundongos , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/metabolismo , Calcitriol/metabolismo , Junção Neuromuscular/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Neurônios Motores/metabolismo
2.
J Neurochem ; 168(4): 342-354, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37994470

RESUMO

Skeletal muscle fiber is a large syncytium with multiple and evenly distributed nuclei. Adult subsynaptic myonuclei beneath the neuromuscular junction (NMJ) express specific genes, the products of which coordinately function in the maintenance of the pre- and post-synaptic regions. However, the gene expression profiles that promote the NMJ formation during embryogenesis remain largely unexplored. We performed single-nucleus RNA sequencing (snRNA-seq) analysis of embryonic and neonatal mouse diaphragms, and found that each myonucleus had a distinct transcriptome pattern during the NMJ formation. Among the previously reported NMJ-constituting genes, Dok7, Chrna1, and Chrnd are specifically expressed in subsynaptic myonuclei at E18.5. In the E18.5 diaphragm, ca. 10.7% of the myonuclei express genes for the NMJ formation (Dok7, Chrna1, and Chrnd) together with four representative ß-catenin regulators (Amotl2, Ptprk, Fam53b, and Tcf7l2). Additionally, the temporal gene expression patterns of these seven genes are synchronized in differentiating C2C12 myoblasts. Amotl2 and Ptprk are expressed in the sarcoplasm, where ß-catenin serves as a structural protein to organize the membrane-anchored NMJ structure. In contrast, Fam53b and Tcf7l2 are expressed in the myonucleus, where ß-catenin serves as a transcriptional coactivator in Wnt/ß-catenin signaling at the NMJ. In C2C12 myotubes, knockdown of Amotl2 or Ptprk markedly, and that of Fam53b and Tcf7l2 less efficiently, impair the clustering of acetylcholine receptors. In contrast, knockdown of Fam53b and Tcf7l2, but not of Amotl2 or Ptprk, impairs the gene expression of Slit2 encoding an axonal attractant for motor neurons, which is required for the maturation of motor nerve terminal. Thus, Amotl2 and Ptprk exert different roles at the NM compared to Fam53b and Tcf7l2. Additionally, Wnt ligands originating from the spinal motor neurons and the perichondrium/chondrocyte are likely to work remotely on the subsynaptic nuclei and the myotendinous junctional nuclei, respectively. We conclude that snRNA-seq analysis of embryonic/neonatal diaphragms reveal a novel coordinated expression profile especially in the Wnt/ß-catenin signaling that regulate the formation of the embryonic NMJ.


Assuntos
Transcriptoma , beta Catenina , Camundongos , Animais , beta Catenina/metabolismo , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Via de Sinalização Wnt/genética , RNA Nuclear Pequeno/metabolismo , Desenvolvimento Embrionário , Músculo Esquelético/metabolismo , Receptores Colinérgicos/metabolismo
3.
JMA J ; 6(4): 499-504, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37941695

RESUMO

Introduction: Remote antenatal checkups were conducted on the northernmost island of Japan to reduce the burden of hospital visits among pregnant women. This study aims to investigate the effectiveness and safety of remote antenatal checkups for pregnant women living on a remote island. Methods: This observational study included singleton pregnancies on Rebun Island between October 2020 and September 2022. General surgeons conducted medical interviews and performed fetal sonography using an obstetrician videoconference system at the main central hospital. The primary outcomes were the degrees of physical, mental, and economic burdens of hospital visits and the levels of anxiety and satisfaction with remote antenatal checkups as assessed using a questionnaire survey. Moreover, we investigated the incidence of adverse perinatal events, including maternal death, fetal death, neonatal death, severe neonatal neurological disorders, and other obstetric complications. Results: This study included 16 out of 22 pregnant women from Rebun Island who visited the central hospital. No adverse perinatal events occurred as a result of the remote antenatal checkups. One pregnant woman had gestational diabetes, whereas the others had no obstetric complications. The participants underwent a median of two remote antenatal checkups. According to a questionnaire survey, 90.0%, 80.0%, and 70.0% of the pregnant women perceived improvements in their physical, mental, and economic burdens, respectively. Although 70.0% of the participants experienced anxiety regarding remote antenatal checkups before the introduction, all were satisfied after delivery. Conclusions: Remote antenatal checkups effectively reduced the burden of hospital visits for pregnant women, who reported high levels of satisfaction. Furthermore, antenatal checkups were safely conducted on remote islands.

4.
J Stroke Cerebrovasc Dis ; 32(12): 107419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839304

RESUMO

OBJECTIVES: Stroke patients frequently exhibit loss of independence of urination, and their lower urinary tract symptoms change with the phase of stroke. However, it is unclear whether switching prescribed drugs for lower urinary tract symptoms during hospitalization from acute care wards to convalescence rehabilitation wards affects patients' independence of urination at discharge. It is also unclear whether the impact of switching varies by stroke type. This retrospective cohort study aimed to examine these issues. MATERIALS AND METHODS: We analyzed 990 patients registered in the Kaga Regional Cooperation Clinical Pathway for Stroke database during 2015-2019. Prescriptions for lower urinary tract symptoms from pre-onset to convalescence rehabilitation were surveyed. Logistic regression analysis was performed to examine the association between switching drugs and independence of urination based on bladder management and voiding location at discharge. Stroke types were also examined in subgroup analyses. RESULTS: About 21 % of patients had their lower urinary tract symptoms prescriptions switched during hospitalization. Switching was positively associated with independence of bladder management (odds ratio 1.65, 95 % confidence interval 1.07 to 2.49) and voiding location (odds ratio 2.72, 95 % confidence interval 1.72 to 4.37). Similar associations were observed in different stroke types. CONCLUSIONS: Approximately 20 % of patients had their lower urinary tract symptoms medications switched upon transfer from acute to convalescence rehabilitation wards. Switching was significantly associated with improved urinary independence at discharge. Consistent results were observed across different stroke types, suggesting that switching medications contributes to urinary independence after stroke, regardless of the etiology or severity of stroke.


Assuntos
Sintomas do Trato Urinário Inferior , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Micção , Convalescença , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Sintomas do Trato Urinário Inferior/diagnóstico , Sintomas do Trato Urinário Inferior/tratamento farmacológico , Sintomas do Trato Urinário Inferior/etiologia
5.
iScience ; 26(10): 107746, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37744035

RESUMO

Glutamine:fructose-6-phosphate transaminase 1 (GFPT1) is the rate-limiting enzyme of the hexosamine biosynthetic pathway (HBP). A 54-bp exon 9 of GFPT1 is specifically included in skeletal and cardiac muscles to generate a long isoform of GFPT1 (GFPT1-L). We showed that SRSF1 and Rbfox1/2 cooperatively enhance, and hnRNP H/F suppresses, the inclusion of human GFPT1 exon 9 by modulating recruitment of U1 snRNP. Knockout (KO) of GFPT1-L in skeletal muscle markedly increased the amounts of GFPT1 and UDP-HexNAc, which subsequently suppressed the glycolytic pathway. Aged KO mice showed impaired insulin-mediated glucose uptake, as well as muscle weakness and fatigue likely due to abnormal formation and maintenance of the neuromuscular junction. Taken together, GFPT1-L is likely to be acquired in evolution in mammalian striated muscles to attenuate the HBP for efficient glycolytic energy production, insulin-mediated glucose uptake, and the formation and maintenance of the neuromuscular junction.

6.
Genes (Basel) ; 14(9)2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37761905

RESUMO

Single nucleotide variants (SNVs) affecting the first nucleotide G of an exon (Fex-SNVs) identified in various diseases are mostly recognized as missense or nonsense variants. Their effect on pre-mRNA splicing has been seldom analyzed, and no curated database is available. We previously reported that Fex-SNVs affect splicing when the length of the polypyrimidine tract is short or degenerate. However, we cannot readily predict the splicing effects of Fex-SNVs. We here scrutinized the available literature and identified 106 splicing-affecting Fex-SNVs based on experimental evidence. We similarly identified 106 neutral Fex-SNVs in the dbSNP database with a global minor allele frequency (MAF) of more than 0.01 and less than 0.50. We extracted 115 features representing the strength of splicing cis-elements and developed machine-learning models with support vector machine, random forest, and gradient boosting to discriminate splicing-affecting and neutral Fex-SNVs. Gradient boosting-based LightGBM outperformed the other two models, and the length and nucleotide compositions of the polypyrimidine tract played critical roles in the discrimination. Recursive feature elimination showed that the LightGBM model using 15 features achieved the best performance with an accuracy of 0.80 ± 0.12 (mean and SD), a Matthews Correlation Coefficient (MCC) of 0.57 ± 0.15, an area under the curve of the receiver operating characteristics curve (AUROC) of 0.86 ± 0.08, and an area under the curve of the precision-recall curve (AUPRC) of 0.87 ± 0.09 using a 10-fold cross-validation. We developed a web service program, named FexSplice that accepts a genomic coordinate either on GRCh37/hg19 or GRCh38/hg38 and returns a predicted probability of aberrant splicing of A, C, and T variants.


Assuntos
Nucleotídeos , Splicing de RNA , Éxons/genética , Bases de Dados Factuais , Frequência do Gene , Nucleotídeos/genética
7.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108583

RESUMO

Agrin is a heparan sulfate proteoglycan essential for the clustering of acetylcholine receptors at the neuromuscular junction. Neuron-specific isoforms of agrin are generated by alternative inclusion of three exons, called Y, Z8, and Z11 exons, although their processing mechanisms remain elusive. We found, by inspection of splicing cis-elements into the human AGRN gene, that binding sites for polypyrimidine tract binding protein 1 (PTBP1) were extensively enriched around Y and Z exons. PTBP1-silencing enhanced the coordinated inclusion of Y and Z exons in human SH-SY5Y neuronal cells, even though three constitutive exons are flanked by these alternative exons. Deletion analysis using minigenes identified five PTBP1-binding sites with remarkable splicing repression activities around Y and Z exons. Furthermore, artificial tethering experiments indicated that binding of a single PTBP1 molecule to any of these sites represses nearby Y or Z exons as well as the other distal exons. The RRM4 domain of PTBP1, which is required for looping out a target RNA segment, was likely to play a crucial role in the repression. Neuronal differentiation downregulates PTBP1 expression and promotes the coordinated inclusion of Y and Z exons. We propose that the reduction in the PTPB1-RNA network spanning these alternative exons is essential for the generation of the neuron-specific agrin isoforms.


Assuntos
Neuroblastoma , RNA , Humanos , RNA/metabolismo , Agrina/genética , Agrina/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo
8.
Gen Thorac Cardiovasc Surg ; 70(12): 1005-1008, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35690990

RESUMO

Takayasu arteritis can affect the coronary ostia, leading to myocardial ischemia. Coronary ostial angioplasty effectively treats coronary artery ostial lesions associated with Takayasu arteritis. We present a case of juvenile Takayasu arteritis with bilateral subclavian artery occlusions treated with a novel coronary artery ostial angioplasty using the external iliac artery.


Assuntos
Doença da Artéria Coronariana , Arterite de Takayasu , Humanos , Arterite de Takayasu/complicações , Arterite de Takayasu/cirurgia , Artéria Ilíaca/diagnóstico por imagem , Artéria Ilíaca/cirurgia , Doença da Artéria Coronariana/complicações , Angioplastia
9.
Commun Biol ; 5(1): 453, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552531

RESUMO

Humans are frequently exposed to time-varying and static weak magnetic fields (WMF). However, the effects of faint magnetic fields, weaker than the geomagnetic field, have been scarcely reported. Here we show that extremely low-frequency (ELF)-WMF, comprised of serial pulses of 10 µT intensity at 1-8 Hz, which is three or more times weaker than the geomagnetic field, reduces mitochondrial mass to 70% and the mitochondrial electron transport chain (ETC) complex II activity to 88%. Chemical inhibition of electron flux through the mitochondrial ETC complex II nullifies the effect of ELF-WMF. Suppression of ETC complex II subsequently induces mitophagy by translocating parkin and PINK1 to the mitochondria and by recruiting LC3-II. Thereafter, mitophagy induces PGC-1α-mediated mitochondrial biogenesis to rejuvenate mitochondria. The lack of PINK1 negates the effect of ELF-WMF. Thus, ELF-WMF may be applicable for the treatment of human diseases that exhibit compromised mitochondrial homeostasis, such as Parkinson's disease.


Assuntos
Mitofagia , Proteínas Quinases , Humanos , Campos Magnéticos , Mitocôndrias , Biogênese de Organelas
10.
Biochem Biophys Res Commun ; 592: 87-92, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35033871

RESUMO

We screened pre-approved drugs for the survival of the Hu5/KD3 human myogenic progenitors. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, promoted the proliferation and survival of Hu5/KD3 cells. Meclozine increased expression of MyoD, but reduced expression of myosin heavy chain and suppressed myotube formation. Withdrawal of meclozine, however, resumed the ability of Hu5/KD3 cells to differentiate into myotubes. We examined the effects of meclozine on mdx mouse carrying a nonsense mutation in the dystrophin gene and modeling for Duchenne muscular dystrophy. Intragastric administration of meclozine in mdx mouse increased the body weight, the muscle mass in the lower limbs, the cross-sectional area of the paravertebral muscle, and improved exercise performances. Previous reports show that inhibition of phosphorylation of ERK1/2 improves muscle functions in mouse models for Emery-Dreifuss muscular dystrophy and cancer cachexia, as well as in mdx mice. We and others previously showed that meclozine blocks the phosphorylation of ERK1/2 in cultured cells. We currently showed that meclozine decreased phosphorylation of ERK1/2 in muscles in mdx mice but not in wild-type mice. This was likely to be one of the underlying mechanisms of the effects of meclozine on mdx mice.


Assuntos
Meclizina/farmacologia , Força Muscular/fisiologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Masculino , Meclizina/uso terapêutico , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Atividade Motora/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Fosforilação/efeitos dos fármacos
11.
EMBO J ; 40(22): e107485, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34605568

RESUMO

Although large exons cannot be readily recognized by the spliceosome, many are evolutionarily conserved and constitutively spliced for inclusion in the processed transcript. Furthermore, whether large exons may be enriched in a certain subset of proteins, or mediate specific functions, has remained unclear. Here, we identify a set of nearly 3,000 SRSF3-dependent large constitutive exons (S3-LCEs) in human and mouse cells. These exons are enriched for cytidine-rich sequence motifs, which bind and recruit the splicing factors hnRNP K and SRSF3. We find that hnRNP K suppresses S3-LCE splicing, an effect that is mitigated by SRSF3 to thus achieve constitutive splicing of S3-LCEs. S3-LCEs are enriched in genes for components of transcription machineries, including mediator and BAF complexes, and frequently contain intrinsically disordered regions (IDRs). In a subset of analyzed S3-LCE-containing transcription factors, SRSF3 depletion leads to deletion of the IDRs due to S3-LCE exon skipping, thereby disrupting phase-separated assemblies of these factors. Cytidine enrichment in large exons introduces proline/serine codon bias in intrinsically disordered regions and appears to have been evolutionarily acquired in vertebrates. We propose that layered splicing regulation by hnRNP K and SRSF3 ensures proper phase-separation of these S3-LCE-containing transcription factors in vertebrates.


Assuntos
Éxons , Fatores de Processamento de Serina-Arginina/genética , Fatores de Transcrição/genética , Vertebrados/genética , Animais , Linhagem Celular , Citidina/genética , Evolução Molecular , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Camundongos , Poliadenilação , Splicing de RNA , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Transcrição/metabolismo
12.
Neuropharmacology ; 195: 108637, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34097946

RESUMO

Decreased acetylcholine receptor (AChR) clustering compromises signal transmission at the neuromuscular junction (NMJ) in myasthenia gravis, congenital myasthenic syndromes, and motor neuron diseases. Although the enhancement of AChR clustering at the NMJ is a promising therapeutic strategy for these maladies, no drug is currently available for this enhancement. We previously reported that zonisamide (ZNS), an anti-epileptic and anti-Parkinson's disease drug, enhances neurite elongation of the primary spinal motor neurons (SMNs). As nerve sprouting occurs to compensate for the loss of AChR clusters in human diseases, we examined the effects of ZNS on AChR clustering at the NMJ. To this end, we established a simple and quick co-culture system to reproducibly make in vitro NMJs using C2C12 myotubes and NSC34 motor neurons. ZNS at 1-20 µM enhanced the formation of AChR clusters dose-dependently in co-cultured C2C12 myotubes but not in agrin-treated single cultured C2C12 myotubes. We observed that molecules that conferred responsiveness to ZNS were not secreted into the co-culture medium. We found that 10 µM ZNS upregulated the expression of neuregulin-1 (Nrg1) in co-cultured cells but not in single cultured C2C12 myotubes or single cultured NSC34 motor neurons. In accordance with this observation, inhibition of the Nrg1/ErbB signaling pathways nullified the effect of 10 µM ZNS on the enhancement of AChR clustering in in vitro NMJs. Although agrin was not induced by 10 µM ZNS in co-cultured cells, anti-agrin antibody attenuated ZNS-mediated enhancement of AChR clustering. We conclude that ZNS enhances agrin-dependent AChR-clustering by upregulating the Nrg1/ErbB signaling pathways in the presence of NMJs.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Neuregulina-1/genética , Junção Neuromuscular/efeitos dos fármacos , Receptores Colinérgicos/metabolismo , Zonisamida/farmacologia , Animais , Linhagem Celular , Técnicas de Cocultura , Camundongos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Neuregulina-1/metabolismo , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo
13.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070162

RESUMO

During mRNA transcription, diverse RNA-binding proteins (RBPs) are recruited to RNA polymerase II (RNAP II) transcription machinery. These RBPs bind to distinct sites of nascent RNA to co-transcriptionally operate mRNA processing. Recent studies have revealed a close relationship between transcription and co-transcriptional RNA processing, where one affects the other's activity, indicating an essential role of protein-RNA interactions for the fine-tuning of mRNA production. Owing to their limited amount in cells, the detection of protein-RNA interactions specifically assembled on the transcribing RNAP II machinery still remains challenging. Currently, cross-linking and immunoprecipitation (CLIP) has become a standard method to detect in vivo protein-RNA interactions, although it requires a large amount of input materials. Several improved methods, such as infrared-CLIP (irCLIP), enhanced CLIP (eCLIP), and target RNA immunoprecipitation (tRIP), have shown remarkable enhancements in the detection efficiency. Furthermore, the utilization of an RNA editing mechanism or proximity labeling strategy has achieved the detection of faint protein-RNA interactions in cells without depending on crosslinking. This review aims to explore various methods being developed to detect endogenous protein-RNA interaction sites and discusses how they may be applied to the analysis of co-transcriptional RNA processing.


Assuntos
Imunoprecipitação/métodos , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Perfilação da Expressão Gênica , Humanos , Imunoprecipitação/tendências , Ligação Proteica , RNA Polimerase II/metabolismo , Transcrição Gênica , Transcriptoma
14.
Front Mol Neurosci ; 13: 154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117128

RESUMO

The neuromuscular junction (NMJ) is a prototypic chemical synapse between the spinal motor neuron and the motor endplate. Gene expression profiles of the motor endplate are not fully elucidated. Collagen Q (ColQ) is a collagenic tail subunit of asymmetric forms of acetylcholinesterase and is driven by two distinct promoters. pColQ1 is active throughout the slow-twitch muscle, whereas pColQ1a is active at the motor endplate of fast-twitch muscle. We made a transgenic mouse line that expresses nuclear localization signal (NLS)-attached Cre recombinase under the control of pColQ1a (pColQ1a-Cre mouse). RiboTag mouse expresses an HA-tagged ribosomal subunit, RPL22, in cells expressing Cre recombinase. We generated pColQ1a-Cre:RiboTag mouse, and confirmed that HA-tagged RPL22 was enriched at the NMJ of tibialis anterior (TA) muscle. Next, we confirmed that Chrne and Musk that are specifically expressed at the NMJ were indeed enriched in HA-immunoprecipitated (IP) RNA, whereas Sox10 and S100b, markers for Schwann cells, and Icam1, a marker for vascular endothelial cells, and Pax3, a marker for muscle satellite cells, were scarcely detected. Gene set enrichment analysis (GSEA) of RNA-seq data showed that "phosphatidylinositol signaling system" and "extracellular matrix receptor interaction" were enriched at the motor endplate. Subsequent analysis revealed that genes encoding diacylglycerol kinases, phosphatidylinositol kinases, phospholipases, integrins, and laminins were enriched at the motor endplate. We first characterized the gene expression profile under translation at the motor endplate of TA muscle using the RiboTag technique. We expect that our gene expression profiling will help elucidate molecular mechanisms of the development, maintenance, and pathology of the NMJ.

15.
Life Sci ; 263: 118577, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33058918

RESUMO

Neuropathic pain is caused by a lesion or a functional impairment of the sensory nervous system and allodynia is one of the frequently observed symptoms in neuropathic pain. Allodynia represents abnormal pain due to a non-noxious stimulus that does not normally provoke pain. Cellular mechanisms underlying neuropathic pain remain mostly elusive, and partial pain relief can be achieved in a limited number of patients by antidepressants, anticonvulsants topical anesthetics, and others. Zonisamide (ZNS) is widely used as an anti-epileptic and anti-Parkinson's disease drug. A recent report shows that ZNS suppresses neuropathic pain associated with diabetes mellitus in a mouse model. We made a mouse model of neuropathic pain in the hindlimb by cutting the nerve at the intervertebral canal at lumbar level 4 (L4). At 28 days after nerve injury, ZNS ameliorated allodynic pain, and reduced the expression of inflammatory cytokines and the nerve injury-induced increase of Iba1-positive microglia in the spinal dorsal horn at L4. In BV2 microglial cells, ZNS reduced the number of lipopolysaccharide-induced amoeboid-shaped cells, representing activated microglia. These results suggest that ZNS is a potential therapeutic agent for neuropathic pain partly by suppressing microglia-mediated neuroinflammation.


Assuntos
Anticonvulsivantes/farmacologia , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Zonisamida/farmacologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Microglia/metabolismo , Neuralgia/fisiopatologia , Medula Espinal/metabolismo
16.
Sci Rep ; 10(1): 13138, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753675

RESUMO

Cervical spondylotic myelopathy (CSM) is caused by chronic compression of the spinal cord and is the most common cause of myelopathy in adults. No drug is currently available to mitigate CSM. Herein, we made a rat model of CSM by epidurally implanting an expanding water-absorbent polymer underneath the laminae compress the spinal cord. The CSM rats exhibited progressive motor impairments recapitulating human CSM. CSM rats had loss of spinal motor neurons, and increased lipid peroxidation in the spinal cord. Zonisamide (ZNS) is clinically used for epilepsy and Parkinson's disease. We previously reported that ZNS protected primary spinal motor neurons against oxidative stress. We thus examined the effects of ZNS on our rat CSM model. CSM rats with daily intragastric administration of 0.5% methylcellulose (n = 11) and ZNS (30 mg/kg/day) in 0.5% methylcellulose (n = 11). Oral administration of ZNS ameliorated the progression of motor impairments, spared the number of spinal motor neurons, and preserved myelination of the pyramidal tracts. In addition, ZNS increased gene expressions of cystine/glutamate exchange transporter (xCT) and metallothionein 2A in the spinal cord in CSM rats, and also in the primary astrocytes. ZNS increased the glutathione (GSH) level in the spinal motor neurons of CSM rats. ZNS potentially ameliorates loss of the spinal motor neurons and demyelination of the pyramidal tracts in patients with CSM.


Assuntos
Compressão da Medula Espinal/tratamento farmacológico , Doenças da Medula Espinal/tratamento farmacológico , Espondilose/tratamento farmacológico , Zonisamida/farmacologia , Animais , Vértebras Cervicais/metabolismo , Vértebras Cervicais/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Ratos , Ratos Wistar , Compressão da Medula Espinal/metabolismo , Compressão da Medula Espinal/patologia , Doenças da Medula Espinal/metabolismo , Doenças da Medula Espinal/patologia , Espondilose/metabolismo , Espondilose/patologia
17.
EMBO Rep ; 21(8): e48462, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32558157

RESUMO

At the neuromuscular junction (NMJ), lipoprotein-related receptor 4 (LRP4) mediates agrin-induced MuSK phosphorylation that leads to clustering of acetylcholine receptors (AChRs) in the postsynaptic region of the skeletal muscle. Additionally, the ectodomain of LRP4 is necessary for differentiation of the presynaptic nerve terminal. However, the molecules regulating LRP4 have not been fully elucidated yet. Here, we show that the CT domain of connective tissue growth factor (CTGF/CCN2) directly binds to the third beta-propeller domain of LRP4. CTGF/CCN2 enhances the binding of LRP4 to MuSK and facilitates the localization of LRP4 on the plasma membrane. CTGF/CCN2 enhances agrin-induced MuSK phosphorylation and AChR clustering in cultured myotubes. Ctgf-deficient mouse embryos (Ctgf-/- ) have small AChR clusters and abnormal dispersion of synaptic vesicles along the motor axon. Ultrastructurally, the presynaptic nerve terminals have reduced numbers of active zones and mitochondria. Functionally, Ctgf-/- embryos exhibit impaired NMJ signal transmission. These results indicate that CTGF/CCN2 interacts with LRP4 to facilitate clustering of AChRs at the motor endplate and the maturation of the nerve terminal.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Proteínas Relacionadas a Receptor de LDL , Agrina/genética , Agrina/metabolismo , Animais , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Camundongos , Junção Neuromuscular/metabolismo , Fosforilação
18.
Cell ; 180(6): 1228-1244.e24, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32142649

RESUMO

Transcription-coupled nucleotide excision repair (TC-NER) is initiated by the stalling of elongating RNA polymerase II (RNAPIIo) at DNA lesions. The ubiquitination of RNAPIIo in response to DNA damage is an evolutionarily conserved event, but its function in mammals is unknown. Here, we identified a single DNA damage-induced ubiquitination site in RNAPII at RPB1-K1268, which regulates transcription recovery and DNA damage resistance. Mechanistically, RPB1-K1268 ubiquitination stimulates the association of the core-TFIIH complex with stalled RNAPIIo through a transfer mechanism that also involves UVSSA-K414 ubiquitination. We developed a strand-specific ChIP-seq method, which revealed RPB1-K1268 ubiquitination is important for repair and the resolution of transcriptional bottlenecks at DNA lesions. Finally, RPB1-K1268R knockin mice displayed a short life-span, premature aging, and neurodegeneration. Our results reveal RNAPII ubiquitination provides a two-tier protection mechanism by activating TC-NER and, in parallel, the processing of DNA damage-stalled RNAPIIo, which together prevent prolonged transcription arrest and protect against neurodegeneration.


Assuntos
Reparo do DNA/fisiologia , RNA Polimerase II/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA/metabolismo , Dano ao DNA/fisiologia , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Feminino , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Polimerase II/genética , Ubiquitinação
19.
EMBO Rep ; 21(5): e49890, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32189459

RESUMO

RNA processing occurs co-transcriptionally through the dynamic recruitment of RNA processing factors to RNA polymerase II (RNAPII). However, transcriptome-wide identification of protein-RNA interactions specifically assembled on transcribing RNAPII is challenging. Here, we develop the targeted RNA immunoprecipitation sequencing (tRIP-seq) method that detects protein-RNA interaction sites in thousands of cells. The high sensitivity of tRIP-seq enables identification of protein-RNA interactions at functional subcellular levels. Application of tRIP-seq to the FUS-RNA complex in the RNAPII machinery reveals that FUS binds upstream of alternative polyadenylation (APA) sites of nascent RNA bound to RNAPII, which retards RNAPII and suppresses the recognition of the polyadenylation signal by CPSF. Further tRIP-seq analyses demonstrate that the repression of APA is achieved by a complex composed of FUS and U1 snRNP on RNAPII, but not by either one alone. Moreover, our analysis reveals that FUS mutations in familial amyotrophic lateral sclerosis (ALS) that impair the FUS-U1 snRNP interaction aberrantly activate the APA sites. tRIP-seq provides new insights into the regulatory mechanism of co-transcriptional RNA processing by RNA processing factors.


Assuntos
Poliadenilação , Proteína FUS de Ligação a RNA , Ribonucleoproteína Nuclear Pequena U1 , Humanos , RNA/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo
20.
Sci Rep ; 10(1): 2558, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054946

RESUMO

Muscleblind-like 1 (MBNL1) is a ubiquitously expressed RNA-binding protein, which is highly expressed in skeletal muscle. Abnormally expanded CUG-repeats in the DMPK gene cause myotonic dystrophy type 1 (DM1) by sequestration of MBNL1 to nuclear RNA foci and by upregulation of another RNA-binding protein, CUG-binding protein 1 (CUGBP1). We previously reported that a nonsteroidal anti-inflammatory drug (NSAID), phenylbutazone, upregulates MBNL1 expression in DM1 mouse model by demethylation of MeR2, an enhancer element in Mbnl1 intron 1. NSAIDs inhibit cyclooxygenase (COX), which is comprised of COX-1 and COX-2 isoforms. In this study, we screened 29 NSAIDs in C2C12 myoblasts, and found that 13 NSAIDs enhanced Mbnl1 expression, where COX-1-selective NSAIDs upregulated Mbnl1 more than COX-2-selective NSAIDs. Consistently, knockdown of COX-1, but not of COX-2, upregulated MBNL1 expression in C2C12 myoblasts and myotubes, as well as in myotubes differentiated from DM1 patient-derived induced pluripotent stem cells (iPSCs). Luciferase assay showed that COX-1-knockdown augmented the MeR2 enhancer activity. Furthermore, bisulfite sequencing analysis demonstrated that COX-1-knockdown suppressed methylation of MeR2. These results suggest that COX-1 inhibition upregulates Mbnl1 transcription through demethylation of the MeR2 enhancer. Taken together, our study provides new insights into the transcriptional regulation of Mbnl1 by the COX-1-mediated pathway.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/genética , Proteínas de Ligação a DNA/genética , Proteínas de Membrana/genética , Distrofia Miotônica/tratamento farmacológico , Proteínas de Ligação a RNA/genética , Animais , Anti-Inflamatórios não Esteroides/classificação , Proteínas CELF1/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/crescimento & desenvolvimento , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/patologia , Miotonina Proteína Quinase/genética , Fenilbutazona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...