Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 568: 76-82, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34192607

RESUMO

Medulloblastoma, the most common malignant brain tumor in children, consists of four molecular subgroups WNT, SHH, Group 3, and Group 4. Group 3 has the worst survival rate among the four subgroups and is characterized by the expression of retina-specific genes. CRX, the master regulator of the photoreceptor differentiation, is aberrantly expressed in Group 3 medulloblastomas. CRX expression increased the proliferation, anchorage-independent growth, invasion potential, and tumorigenicity of medulloblastoma cells indicating the oncogenic role of CRX in medulloblastoma pathogenesis. CRX knockdown resulted in the downregulation of expression of several retina-specific genes like IMPG2, PDC, RCVRN. and Group 3 specific genes like GABRA5, MYC, PROM1. Thus, CRX plays a major role not only in the expression of retina-specific genes but also in defining Group 3 identity. Increased expression of several pro-apoptotic genes upon CRX knockdown suggests that CRX could protect Group 3 medulloblastoma cells from cell death. Several negative regulators of the TGF-ß signaling pathway like SMAD7, PMEPA1, KLF2 were upregulated upon the CRX knockdown. Western blot analysis showed a decrease in the levels of (Phospho)-SMAD2, total levels of SMAD2, SMAD4, and an increase in the levels of SMAD7 indicating inhibition of the TGF-ß signaling pathway upon CRX knockdown. Copy number variations in several genes involved in the TGF-ß signaling pathway occur in a subset of Group 3 tumors. Autocrine TGF-ß/activin signaling has recently been reported to be active in a subset of Group 3 medulloblastomas. CRX knockdown resulting in the inhibition of the TGF-ß/activin signaling pathway demonstrates an interaction between the two Group 3 specific oncogenic pathways and suggests simultaneous targeting of both CRX and TGF-ß signaling as a possible therapeutic strategy.


Assuntos
Ativinas/metabolismo , Neoplasias Cerebelares/genética , Proteínas de Homeodomínio/genética , Meduloblastoma/genética , Transdução de Sinais , Transativadores/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Cerebelares/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Meduloblastoma/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID
2.
Acta Neuropathol Commun ; 7(1): 52, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944042

RESUMO

Genome-wide expression profiling studies have identified four core molecular subgroups of medulloblastoma: WNT, SHH, Group 3 and Group 4. Molecular markers are necessary for accurate risk stratification in the non-WNT subgroups due to the underlying heterogeneity in genetic alterations and overall survival. MiR-204 expression was evaluated in molecularly classified 260 medulloblastomas from an Indian cohort and in 763 medulloblastomas from the MAGIC cohort, SickKids, Canada. Low expression of miR-204 in the Group 3 / Group 4 tumors identify a highly aggressive subset of tumors having poor overall survival, in the two independent cohorts of medulloblastomas. Downregulation of miR-204 expression correlates with poor survival within the Group 4 as well indicating it as a valuable risk-stratification marker in the subgroup. Restoration of miR-204 expression in multiple medulloblastoma cell lines was found to inhibit their anchorage-independent growth, invasion potential and tumorigenicity. IGF2R was identified as a novel target of miR-204. MiR-204 expression resulted in downregulation of both M6PR and IGF2R that transport lysosomal proteases from the Golgi apparatus to the lysosomes. Consistent with this finding, miR-204 expression resulted in reduction in the levels of the lysosomal proteases in medulloblastoma cells. MiR-204 expression also resulted in inhibition of autophagy that is known to be dependent on the lysosomal degradation pathway and LC3B, a known miR-204 target. Treatment with HDAC inhibitors resulted in upregulation of miR-204 expression in medulloblastoma cells, suggesting therapeutic role for these inhibitors in the treatment of medulloblastomas. In summary, miR-204 is not only a valuable risk stratification marker in the combined cohort of Group 3 / Group 4 medulloblastomas as well as in the Group 4 itself, that has paucity of good prognostication markers, but also has therapeutic potential as indicated by its tumor suppressive effect on medulloblastoma cells.


Assuntos
Neoplasias Cerebelares/metabolismo , Regulação para Baixo/fisiologia , Regulação Neoplásica da Expressão Gênica , Meduloblastoma/metabolismo , MicroRNAs/biossíntese , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/mortalidade , Estudos de Coortes , Células HEK293 , Humanos , Meduloblastoma/genética , Meduloblastoma/mortalidade , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , Gradação de Tumores/métodos , Taxa de Sobrevida/tendências , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...