Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Electrophoresis ; 45(1-2): 69-100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37259641

RESUMO

Proteins are important molecules involved in an immensely large number of biological processes. Being capable of manipulating proteins is critical for developing reliable and affordable techniques to analyze and/or detect them. Such techniques would enable the production of therapeutic agents for the treatment of diseases or other biotechnological applications (e.g., bioreactors or biocatalysis). Microfluidic technology represents a potential solution to protein manipulation challenges because of the diverse phenomena that can be exploited to achieve micro- and nanoparticle manipulation. In this review, we discuss recent contributions made in the field of protein manipulation in microfluidic systems using different physicochemical principles and techniques, some of which are miniaturized versions of already established macro-scale techniques.


Assuntos
Técnicas Analíticas Microfluídicas , Nanopartículas , Microfluídica/métodos , Técnicas Analíticas Microfluídicas/métodos , Nanopartículas/química , Dispositivos Lab-On-A-Chip
2.
Electrophoresis ; 44(24): 1989-1999, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605320

RESUMO

Separation of PEGylated protein mixtures into individual species is a challenging procedure, and many efforts have been focused on creating novel chromatographic supports for this purpose. In this study, a new monolithic stationary phase with hyperbranched nanostructures was chemically synthesized. For this, monoliths with a support matrix of poly (glycidyl methacrylate-co-ethylene dimethacrylate) and ethylenediamine chemistry were modified with third-generation dendrons with butyl-end groups. The new monolith was analyzed by infrared spectroscopy, confirming the dendron with butyl ligands and exhibited low mass transfer resistance as observed by breakthrough frontal analysis. This support was able to separate mono-PEG ribonuclease A from the PEGylation mixture, indicated by a single band (∼30 kDa) in the electrophoretic analysis. Moreover, the separation of mono-PEGylated positional isomers was probably observed, as the protein with ∼30 kDa was found in two separate peaks. Interestingly, the dendronized monolith allowed the separation of the reaction mixture into individual PEGylated species when using high ammonium sulfate concentrations (2 M). A correlation between the PEGylation degree and the strength of the hydrophobic interactions on the monolith was observed. This chromatographic approach combines the natural branched architecture of dendrons and the higher capabilities of the monoliths enhancing the hydrophobic surface area, and therefore the interaction between the PEGylated proteins and ligands. Thus, the novel support represents a novel platform for the purification of PEGylated from non-PEGylated proteins with biotechnological applications.


Assuntos
Dendrímeros , Proteínas/química , Cromatografia Líquida/métodos , Isomerismo , Polietilenoglicóis/química
3.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268692

RESUMO

Rambutan (Nephelium lappaceum L.) is a tropical fruit from Asia which has become the main target of many studies involving polyphenolic analysis. Mexico produces over 8 million tons per year of rambutan, generating a huge amount of agro-industrial waste since only the pulp is used and the peel, which comprises around 45% of the fruit's weight, is left behind. This waste can later be used in the recovery of polyphenolic fractions. In this work, emerging technologies such as microwave, ultrasound, and the hybridization of both were tested in the extraction of phenolic compounds from Mexican rambutan peel. The results show that the hybrid technology extraction yielded the highest polyphenolic content (176.38 mg GAE/g of dry rambutan peel). The HPLC/MS/ESI analysis revealed three majoritarian compounds: geraniin, corilagin, and ellagic acid. These compounds explain the excellent results for the biological assays, namely antioxidant activity evaluated by the DPPH, ABTS, and LOI (Lipid oxidation inhibition) assays that exhibited great antioxidant capacity with IC50 values of 0.098, 0.335, and 0.034 mg/mL respectively, as well as prebiotic activity demonstrated by a µMax (maximum growth) of 0.203 for Lactobacillus paracasei. Lastly, these compounds have shown no hemolytic activity, opening the door for the elaboration of different products in the food, cosmetic, and pharmaceutical industries.


Assuntos
Sapindaceae , Frutas/química , Taninos Hidrolisáveis/análise , Taninos Hidrolisáveis/farmacologia , México , Micro-Ondas , Extratos Vegetais/química , Sapindaceae/química
4.
Anal Chem ; 91(23): 14975-14982, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31738514

RESUMO

Exosomes are a specific subpopulation of extracellular vesicles that have gained interest because of their many potential biomedical applications. However, exosome isolation and characterization are the first steps toward designing novel applications. This work presents a direct current-insulator-based dielectrophoretic (DC-iDEP) approach to simultaneously capture and separate exosomes by size. To do so, a microdevice consisting of a channel with two electrically insulating post sections was designed. Each section was tailored to generate different nonuniform spatial distributions of the electric field and, therefore, different dielectrophoretic forces acting on exosomes suspended in solution. Side channels were placed adjacent to each section to allow sample recovery. By applying an electric potential difference of 2000 V across the length of the main channel, dielectrophoretic size-based separation of exosomes was observed in the device. Analysis of particle size in each recovered fraction served to assess exosome separation efficiency. These findings show that iDEP can represent a first step toward designing a high-throughput, fast, and robust microdevice capable of capturing and discriminating different subpopulations of exosomes based on their size.


Assuntos
Eletroforese/instrumentação , Exossomos , Técnicas Analíticas Microfluídicas/métodos , Eletroforese/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Tamanho da Partícula
5.
Electron. j. biotechnol ; 41: 81-87, sept. 2019. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1087242

RESUMO

Background: The search for innovative anti-tubercular agents has received increasing attention in tuberculosis chemotherapy because Mycobacterium tuberculosis infection has steadily increased over the years. This underlines the necessity for new methods of preparation for polymer-drug adducts to treat this important infectious disease. The use of poly(ethylene glycol)(PEG) is an alternative producing anti-tubercular derivatives. However, it is not yet known whether PEGylated isonicotinylhydrazide conjugates obtained by direct links with PEG are useful for therapeutic applications. Results: Here, we synthesized a PEGylated isoniazid (PEG-g-INH or PEG­INH) by gamma radiation-induced polymerization, for the first time. The new prodrugs were characterized using Raman and UV/Vis spectrometry. The mechanism of PEGylated INH synthesis was proposed. The in vitro evaluation of a PEGylated isonicotinylhydrazide macromolecular prodrug was also carried out. The results indicated that PEG­INH inhibited the bacterial growth above 95% as compared with INH, which showed a lower value (80%) at a concentration of 0.25 µM. Similar trends are observed for 0.1, 1, and 5 µM. Conclusions: In summary, the research suggests that it is possible to covalently attach the PEG onto INH by the proposed method and to obtain a slow-acting isoniazid derivative with little toxicity in vitro and higher antimycobacterial potency than the neat drug.


Assuntos
Polietilenoglicóis/química , Isoniazida/química , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/química , Polietilenoglicóis/farmacologia , Polímeros , Análise Espectral Raman , Técnicas In Vitro , Pró-Fármacos , Polimerização , Raios gama , Isoniazida/farmacologia , Antituberculosos/farmacologia
6.
Biomicrofluidics ; 10(3): 033106, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27375815

RESUMO

Synthesis of PEGylated proteins results in a mixture of protein-polyethylene glycol (PEG) conjugates and the unreacted native protein. From a ribonuclease A (RNase A) PEGylation reaction, mono-PEGylated RNase A (mono-PEG RNase A) has proven therapeutic effects against cancer, reason for which there is an interest in isolating it from the rest of the reaction products. Experimental trapping of PEGylated RNase A inside an electrokinetically driven microfluidic device has been previously demonstrated. Now, from a theoretical point of view, we have studied the electrokinetic phenomena involved in the dielectrophoretic streaming of the native RNase A protein and the trapping of the mono-PEG RNase A inside a microfluidic channel. To accomplish this, we used two 3D computational models, a sphere and an ellipse, adapted to each protein. The effect of temperature on parameters related to trapping was also studied. A temperature increase showed to rise the electric and thermal conductivities of the suspending solution, hindering dielectrophoretic trapping. In contrast, the dynamic viscosity of the suspending solution decreased as the temperature rose, favoring the dielectrophoretic manipulation of the proteins. Also, our models were able to predict the magnitude and direction of the velocity of both proteins indicating trapping for the PEGylated conjugate or no trapping for the native protein. In addition, a parametric sweep study revealed the effect of the protein zeta potential on the electrokinetic response of the protein. We believe this work will serve as a tool to improve the design of electrokinetically driven microfluidic channels for the separation and recovery of PEGylated proteins in one single step.

7.
J Chromatogr A ; 1443: 191-200, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27018188

RESUMO

Here, we introduced a new technology based on the incorporation of dendrons-branched chemical structures-onto supports for synthesis of HIC adsorbents. In doing so we studied the synthesis and performance of these novel HIC dendron-based adsorbents. The adsorbents were synthesized in a facile two-step reaction. First, Sepharose 4FF (R) was chemically modified with polyester dendrons of different branching degrees i.e. third (G3) or fifth (G5) generations. Then, butyl-end valeric acid ligands were coupled to dendrons via ester bond formation. UV-vis spectrophotometry and FTIR analyses of the modified resins confirmed the presence of the dendrons and their ligands on them. Inclusion of dendrons allowed the increment of ligand density, 82.5 ± 11 and 175.6 ± 5.7 µmol ligand/mL resin for RG3 and RG5, respectively. Static adsorption capacity of modified resins was found to be ∼ 60 mg BSA/mL resin. Interestingly, dynamic binding capacity was higher at high flow rates, 62.5 ± 0.8 and 58.0 ± 0.5mg/mL for RG3 and RG5, respectively. RG3 was able to separate lipase, ß-lactoglobulin and α-chymotrypsin selectively as well as fractionating of a whole proteome from yeast. This innovative technology will improve the existing HIC resin synthesis methods. It will also allow the reduction of the amount of adsorbent used in a chromatographic procedure and thus permit the use of smaller columns resulting in faster processes. Furthermore, this method could potentially be considered as a green technology since both, dendrons and ligands, are formed by ester bonds that are more biodegradable allowing the disposal of used resin waste in a more ecofriendly manner when compared to other exiting resins.


Assuntos
Cromatografia/métodos , Dendrímeros/química , Ligantes , Adsorção , Quimotripsina/química , Dendrímeros/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Lactoglobulinas/química , Proteoma/química , Sefarose/química
8.
Electrophoresis ; 37(3): 519-28, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26530024

RESUMO

Ribonuclease A (RNase A) has proven potential as a therapeutic agent, especially in its PEGylated form. Grafting of PEG molecules to this protein yields mono-PEGylated (mono-PEG) and di-PEGylated (di-PEG) RNase A conjugates, and the unreacted protein. Mono-PEG RNase A is of great interest. The use of electrokinetic forces in microdevices represents a novel alternative to chromatographic methods to separate this specie. This work describes the dielectrophoretic behavior of the main protein products of the RNase A PEGylation inside a microchannel with insulators under direct current electric fields. This approach represents the first step in route to design micro-bioprocesses to separate PEGylated RNase A from unreacted native protein. The three proteins exhibited different dielectrophoretic behaviors. All of them experienced a marked streaming pattern at 3000 V consistent with positive dielectrophoresis. Native protein was not captured at any of the conditions tested, while mono-PEG RNase A and di-PEG RNase A were captured presumably due to positive dielectrophoresis at 4000 and 2500 V, respectively. Concentration of mono-PEG RNase A with a maximal enrichment efficiency of ≈9.6 times the feed concentration was achieved in few seconds. These findings open the possibility of designing novel devices for rapid separation, concentration, and recovery of PEGylated RNase A in a one-step operation.


Assuntos
Eletroforese/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Polietilenoglicóis/química , Ribonuclease Pancreático/química , Animais , Bovinos , Simulação por Computador , Diamante , Eletroforese/métodos , Técnicas Analíticas Microfluídicas/métodos
9.
Appl Biochem Biotechnol ; 176(4): 1131-40, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25920332

RESUMO

Gallic acid production in a batch bioreactor was evaluated using as catalytic material the mouldy polyurethane solids (MPS) obtained from a solid-state fermentation (SSF) bioprocess carried out for tannase production by Aspergillus niger GH1 on polyurethane foam powder (PUF) with 5 % (v/w) of tannic acid as inducer. Fungal biomass, tannic acid consumption and tannase production were kinetically monitored. SSF was stopped when tannase activity reached its maximum level. Effects of washing with distilled water and drying on the tannase activity of MPS were determined. Better results were obtained with dried and washed MPS retaining 84 % of the tannase activity. Maximum tannase activity produced through SSF after 24 h of incubation was equivalent to 130 U/gS with a specific activity of 36 U/mg. The methylgallate was hydrolysed (45 %) in an easy, cheap and fast bioprocess (30 min). Kinetic parameters of tannase self-immobilized on polyurethane particles were calculated to be 5 mM and 04.1 × 10(-2) mM/min for K M and V max, respectively. Results demonstrated that the MPS, with tannase activity, can be successfully used for the production of the antioxidant gallic acid from methyl-gallate substrate. Direct use of PMS to produce gallic acid can be advantageous as no previous extraction of enzyme is required, thus reducing production costs.


Assuntos
Aspergillus niger/metabolismo , Hidrolases de Éster Carboxílico/biossíntese , Proteínas Fúngicas/biossíntese , Ácido Gálico/análogos & derivados , Ácido Gálico/metabolismo , Taninos/metabolismo , Adsorção , Reatores Biológicos , Meios de Cultura/química , Dessecação , Fermentação , Concentração de Íons de Hidrogênio , Cinética , Poliuretanos/química
10.
J Sci Food Agric ; 95(7): 1554-61, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25103563

RESUMO

BACKGROUND: In the food industry, the use of pectinase preparations with high pectin esterase (PE) activity leads to the release of methanol, which is strictly regulated in food products. Herein, a pectin-degrading enzyme (PDE) complex exhibiting low PE activity of three Aspergillus sojae ATCC 20235 mutants (M3, DH56 and Guserbiot 2.230) was investigated. Production of exo-/endo-polygalacturonase (PG), exo-polymethylgalacturonase (PMG) and pectin lyase (PL) by mutant M3 and A. sojae using two different carbon sources was evaluated in solid-state fermentation. Finally, experimental preparations obtained from the mutants and commercial pectinases standardized to the same potency were screened for PDEs. RESULTS: Mutant M3 grown on sugar beet was found to be the best producer of exo-PG, endo-PG, exo-PMG and PL, with maximum yields of 1111, 449, 130 and 123 U g(-1), respectively. All experimental preparations exhibited low PE activity, at least 21.5 times less than commercial pectinases, and higher endo-PG (40 U mL(-1)). CONCLUSION: Mutant M3 was the best PDE producer using sugar beet. Mutant strains presented a PDE complex featuring high endo-PG and very low PE activities. This novel complex with low de-esterifying activity can be exploited in the food industry to degrade pectin without releasing methanol.


Assuntos
Aspergillus niger/enzimologia , Beta vulgaris , Fermentação , Complexos Multienzimáticos/metabolismo , Mutação , Pectinas/metabolismo , Poligalacturonase/metabolismo , Aspergillus niger/genética , Aspergillus niger/crescimento & desenvolvimento , Meios de Cultura , Esterases/metabolismo , Esterificação , Humanos , Liases/biossíntese , Liases/metabolismo , Metanol/metabolismo
11.
Electrophoresis ; 34(3): 401-4, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23151947

RESUMO

Visualization of proteins and MS-based analyses are elemental tasks in modern biochemistry. Nevertheless, reports about covalent protein dyes and their suitability for subsequent MS experiments remain scarce. In a recent work, we demonstrated that covalent prestaining of proteins with Uniblue A drastically speeds up proteomic workflows. The present study introduces dabsyl chloride as another truly MS-compatible protein stain. Remarkably, although Uniblue A and dabsyl chloride employ different nucleophilic reaction mechanisms, both are highly specific for lysine residues. The predictable peptide modifications allow easy integration into state-of-the-art bioinformatic workflows. Further, lysine-directed derivatizations with hydrophobic reagents such as dabsyl chloride complement the cysteine-directed ALiPHAT strategy for increasing the sensitivity of peptide identifications.


Assuntos
Corantes/química , Lisina/química , Espectrometria de Massas/métodos , Proteínas/análise , Proteômica/métodos , Antraquinonas/química , Proteínas/química , Ácidos Sulfônicos/química , Temperatura , p-Dimetilaminoazobenzeno/análogos & derivados , p-Dimetilaminoazobenzeno/química
12.
PLoS One ; 7(2): e31438, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363648

RESUMO

BACKGROUND: The identification of proteins by mass spectrometry is a standard method in biopharmaceutical quality control and biochemical research. Prior to identification by mass spectrometry, proteins are usually pre-separated by electrophoresis. However, current protein staining and de-staining protocols are tedious and time consuming, and therefore prolong the sample preparation time for mass spectrometry. METHODOLOGY AND PRINCIPAL FINDINGS: We developed a 1-minute covalent pre-gel staining protocol for proteins, which does not require de-staining before the mass spectrometry analysis. We investigated the electrophoretic properties of derivatized proteins and peptides and studied their behavior in mass spectrometry. Further, we elucidated the preferred reaction of proteins with Uniblue A and demonstrate the integration of the peptide derivatization into typical informatics tools. CONCLUSIONS AND SIGNIFICANCE: The Uniblue A staining method drastically speeds up the sample preparation for the mass spectrometry based identification of proteins. The application of this chemo-proteomic strategy will be advantageous for routine quality control of proteins and for time-critical tasks in protein analysis.


Assuntos
Antraquinonas/metabolismo , Géis/metabolismo , Espectrometria de Massas/métodos , Proteínas/análise , Coloração e Rotulagem/métodos , Ácidos Sulfônicos/metabolismo , Sequência de Aminoácidos , Aminoácidos/análise , Antraquinonas/química , Cromatografia Líquida , Biologia Computacional , Bases de Dados de Proteínas , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Peptídeos/análise , Peptídeos/química , Proteínas/química , Padrões de Referência , Corantes de Rosanilina , Ácidos Sulfônicos/química
13.
Appl Biochem Biotechnol ; 165(5-6): 1141-51, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21837378

RESUMO

Tannase is an inducible enzyme with important applications in the food and pharmaceutical industries. This enzyme was produced by the fungus Aspergillus niger GH1 under solid-state fermentation using polyurethane foam as solid support and tannic acid as sole carbon source and tannase inducer. Physicochemical properties of A. niger tannase were characterized, and the kinetic and thermodynamics parameters on methyl gallate hydrolysis were evaluated. The enzyme was stable in a pH range of 2-8 and a functional temperature range of 25-65 °C. The highest k(cat) value was 2,611.10 s(-1) at 65 °C. Tannase had more affinity for methyl gallate at 45 °C with a K(M) value of 1.82 mM and an efficiency of hydrolysis (k(cat)/K(M)) of 330.01 s(-1) mM(-1). The lowest E(a) value was found to be 21.38 kJ/mol at 4.4 mM of methyl gallate. The lowest free energy of Gibbs (ΔG) and enthalpy (ΔH) were found to be 64.86 and 18.56 kJ/mol, respectively. Entropy (ΔS) was -0.22 kJ/mol K. Results suggest that the A. niger GH1 tannase is an attractive enzyme for industrial applications due its catalytic and thermodynamical properties.


Assuntos
Aspergillus niger/enzimologia , Hidrolases de Éster Carboxílico/química , Proteínas Fúngicas/química , Aspergillus niger/crescimento & desenvolvimento , Técnicas de Cultura Celular por Lotes/instrumentação , Biocatálise , Hidrolases de Éster Carboxílico/metabolismo , Estabilidade Enzimática , Fermentação , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Poliuretanos/análise
14.
Appl Biochem Biotechnol ; 160(7): 2045-53, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19768388

RESUMO

The production of extracellular and mycelia-associated penicillin G acylase (maPGA) with Mucor griseocyanus H/55.1.1 by surface-adhesion fermentation using Opuntia imbricata, a cactus, as a natural immobilization support was studied. Enzyme activity to form 6-aminopencillanic acid (6-APA) from penicillin G was assayed spectrophotometrically. The penicillin G hydrolysis to 6-APA was evaluated at six different times using PGA samples recovered from the skim milk medium at five different incubation times. Additionally, the effect of varying the penicillin G substrate concentration level on the PGA enzyme activity was also studied. The maximum reaction rate, V (max), and the Michaelis constant, K (M), were determined using the Michaelis-Menten model. The maximum levels for maPGA and extracellular activity were found to be 2,126.50 international unit per liter (IU/l; equal to 997.83 IU/g of support) at 48 h and 755.33 IU/l at 60 h, respectively. Kinetics of biomass production for total biomass showed a maximum growth at 60 h of 3.36 and 2.55 g/l (equal to 0.012 g of biomass per gram of support) for the immobilized M. griseocyanus biomass. The maPGA was employed for the hydrolysis of penicillin G to obtain 6-APA in a batch reactor. The highest quantity of 6-APA obtained was 226.16 mg/l after 40-min reaction. The effect of substrate concentration on maPGA activity was evaluated at different concentrations of penicillin G (0-10 mM). K(M) and V(max) were determined to be 3.0 x 10(-3) M and 4.4 x 10(-3) mM/min, respectively.


Assuntos
Enzimas Imobilizadas/biossíntese , Fermentação , Ácido Penicilânico/análogos & derivados , Penicilina Amidase/biossíntese , Penicilina G/química , Biofilmes , Adesão Celular , Ativação Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Hidrólise , Opuntia/enzimologia , Ácido Penicilânico/síntese química , Ácido Penicilânico/química , Ácido Penicilânico/metabolismo , Penicilina Amidase/química , Penicilina Amidase/metabolismo , Penicilina G/metabolismo , Propriedades de Superfície
15.
J Microbiol Biotechnol ; 19(9): 987-96, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19809257

RESUMO

Aspergillus niger GH1 previously isolated and identified by our group as a wild tannase producer was grown under solid-state (SSC) and submerged culture (SmC) conditions to select the enzyme production system. For tannase purification, extracellular tannase was produced under SSC using polyurethane foam as the inert support. Tannase was purified to apparent homogeneity by ultrafiltration, anion-exchange chromatography, and gel filtration that led to a purified enzyme with a specific activity of 238.14 IU/mg protein with a final yield of 0.3% and a purification fold of 46. Three bands were found on the SDS-PAG with molecular masses of 50, 75, and 100 kDa. PI of 3.5 and 7.1% Nglycosylation were noted. Temperature and pH optima were 60 degrees and 6.0 [methyl 3,4,5-trihydroxybenzoate (MTB) as substrate], respectively. Tannase was found with a KM value of 0.41 x 10-4 M and the value of Vmax was 11.03 micromoL/min at 60 degrees for MTB. Effects of several metal salts, solvents, surfactants, and typical enzyme inhibitors on tannase activity were evaluated to establish the novelty of the enzyme. Finally, the tannase from A. niger GH1 was significantly inhibited by PMSF (phenylmethylsulfonyl fluoride), and therefore, it is possible to consider the presence of a serine or cysteine residue in the catalytic site.


Assuntos
Aspergillus niger/enzimologia , Hidrolases de Éster Carboxílico/genética , Aspergillus niger/citologia , Aspergillus niger/crescimento & desenvolvimento , Hidrolases de Éster Carboxílico/isolamento & purificação , Hidrolases de Éster Carboxílico/metabolismo , Cromatografia em Gel/métodos , Cromatografia por Troca Iônica/métodos , Meios de Cultura , Proteínas Fúngicas/genética , Concentração de Íons de Hidrogênio , Cinética , Tensoativos/farmacologia , Ultrafiltração/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA