Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 10(1): 217, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36482420

RESUMO

BACKGROUND: From a theoretical ecology point of view, microbiomes are far more complex than expected. Besides competition and competitive exclusion, cooperative microbe-microbe interactions have to be carefully considered. Metabolic dependencies among microbes likely explain co-existence in microbiota. METHODOLOGY: In this in silico study, we explored genome-scale metabolic models (GEMs) of 193 bacteria isolated from Arabidopsis thaliana roots. We analyzed their predicted producible metabolites under simulated nutritional constraints including "root exudate-mimicking growth media" and assessed the potential of putative metabolic exchanges of by- and end-products to avoid those constraints. RESULTS: We found that the genome-encoded metabolic potential is quantitatively and qualitatively clustered by phylogeny, highlighting metabolic differentiation between taxonomic groups. Random, synthetic combinations of increasing numbers of strains (SynComs) indicated that the number of producible compounds by GEMs increased with average phylogenetic distance, but that most SynComs were centered around an optimal phylogenetic distance. Moreover, relatively small SynComs could reflect the capacity of the whole community due to metabolic redundancy. Inspection of 30 specific end-product metabolites (i.e., target metabolites: amino acids, vitamins, phytohormones) indicated that the majority of the strains had the genetic potential to produce almost all the targeted compounds. Their production was predicted (1) to depend on external nutritional constraints and (2) to be facilitated by nutritional constraints mimicking root exudates, suggesting nutrient availability and root exudates play a key role in determining the number of producible metabolites. An answer set programming solver enabled the identification of numerous combinations of strains predicted to depend on each other to produce these targeted compounds under severe nutritional constraints thus indicating a putative sub-community level of functional redundancy. CONCLUSIONS: This study predicts metabolic restrictions caused by available nutrients in the environment. By extension, it highlights the importance of the environment for niche potential, realization, partitioning, and overlap. Our results also suggest that metabolic dependencies and cooperation among root microbiota members compensate for environmental constraints and help maintain co-existence in complex microbial communities. Video Abstract.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Filogenia , Ecologia , Microbiota/genética , Peptídeos e Proteínas de Sinalização Intracelular
2.
Front Microbiol ; 12: 780469, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987488

RESUMO

Understanding how microorganism-microorganism interactions shape microbial assemblages is a key to deciphering the evolution of dependencies and co-existence in complex microbiomes. Metabolic dependencies in cross-feeding exist in microbial communities and can at least partially determine microbial community composition. To parry the complexity and experimental limitations caused by the large number of possible interactions, new concepts from systems biology aim to decipher how the components of a system interact with each other. The idea that cross-feeding does impact microbiome assemblages has developed both theoretically and empirically, following a systems biology framework applied to microbial communities, formalized as microbial systems ecology (MSE) and relying on integrated-omics data. This framework merges cellular and community scales and offers new avenues to untangle microbial coexistence primarily by metabolic modeling, one of the main approaches used for mechanistic studies. In this mini-review, we first give a concise explanation of microbial cross-feeding. We then discuss how MSE can enable progress in microbial research. Finally, we provide an overview of a MSE framework mostly based on genome-scale metabolic-network reconstruction that combines top-down and bottom-up approaches to assess the molecular mechanisms of deterministic processes of microbial community assembly that is particularly suitable for use in synthetic biology and microbiome engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA