Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1146681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008471

RESUMO

Roots optimize the acquisition of limited soil resources, but relationships between root forms and functions have often been assumed rather than demonstrated. Furthermore, how root systems co-specialize for multiple resource acquisitions is unclear. Theory suggests that trade-offs exist for the acquisition of different resource types, such as water and certain nutrients. Measurements used to describe the acquisition of different resources should then account for differential root responses within a single system. To demonstrate this, we grew Panicum virgatum in split-root systems that vertically partitioned high water availability from nutrient availability so that root systems must absorb the resources separately to fully meet plant demands. We evaluated root elongation, surface area, and branching, and we characterized traits using an order-based classification scheme. Plants allocated approximately 3/4th of primary root length towards water acquisition, whereas lateral branches were progressively allocated towards nutrients. However, root elongation rates, specific root length, and mass fraction were similar. Our results support the existence of differential root functioning within perennial grasses. Similar responses have been recorded in many plant functional types suggesting a fundamental relationship. Root responses to resource availability can be incorporated into root growth models via maximum root length and branching interval parameters.

2.
Sensors (Basel) ; 22(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35632322

RESUMO

Wireless Underground Sensor Networks (WUSNs) that collect geospatial in situ sensor data are a backbone of internet-of-things (IoT) applications for agriculture and terrestrial ecology. In this paper, we first show how WUSNs can operate reliably under field conditions year-round and at the same time be used for determining and mapping soil conditions from the buried sensor nodes. We demonstrate the design and deployment of a 23-node WUSN installed at an agricultural field site that covers an area with a 530 m radius. The WUSN has continuously operated since September 2019, enabling real-time monitoring of soil volumetric water content (VWC), soil temperature (ST), and soil electrical conductivity. Secondly, we present data collected over a nine-month period across three seasons. We evaluate the performance of a deep learning algorithm in predicting soil VWC using various combinations of the received signal strength (RSSI) from each buried wireless node, above-ground pathloss, the distance between wireless node and receive antenna (D), ST, air temperature (AT), relative humidity (RH), and precipitation as input parameters to the model. The AT, RH, and precipitation were obtained from a nearby weather station. We find that a model with RSSI, D, AT, ST, and RH as inputs was able to predict soil VWC with an R2 of 0.82 for test datasets, with a Root Mean Square Error of ±0.012 (m3/m3). Hence, a combination of deep learning and other easily available soil and climatic parameters can be a viable candidate for replacing expensive soil VWC sensors in WUSNs.


Assuntos
Agricultura , Solo , Algoritmos , Ecologia , Água
3.
Proc Natl Acad Sci U S A ; 119(15): e2118879119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377798

RESUMO

Polyploidy results from whole-genome duplication and is a unique form of heritable variation with pronounced evolutionary implications. Different ploidy levels, or cytotypes, can exist within a single species, and such systems provide an opportunity to assess how ploidy variation alters phenotypic novelty, adaptability, and fitness, which can, in turn, drive the development of unique ecological niches that promote the coexistence of multiple cytotypes. Switchgrass, Panicum virgatum, is a widespread, perennial C4 grass in North America with multiple naturally occurring cytotypes, primarily tetraploids (4×) and octoploids (8×). Using a combination of genomic, quantitative genetic, landscape, and niche modeling approaches, we detect divergent levels of genetic admixture, evidence of niche differentiation, and differential environmental sensitivity between switchgrass cytotypes. Taken together, these findings support a generalist (8×)­specialist (4×) trade-off. Our results indicate that the 8× represent a unique combination of genetic variation that has allowed the expansion of switchgrass' ecological niche and thus putatively represents a valuable breeding resource.


Assuntos
Aclimatação , Panicum , Poliploidia , Aclimatação/genética , Variação Genética , Panicum/genética , Panicum/fisiologia , Tetraploidia
4.
Sci Adv ; 7(9)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33627437

RESUMO

Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate.

5.
Nature ; 590(7846): 438-444, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33505029

RESUMO

Long-term climate change and periodic environmental extremes threaten food and fuel security1 and global crop productivity2-4. Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience5, these approaches require sufficient knowledge of the genes that underlie productivity and adaptation6-knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate-gene-biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene-trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.


Assuntos
Aclimatação/genética , Biocombustíveis , Genoma de Planta/genética , Genômica , Aquecimento Global , Panicum/genética , Poliploidia , Biomassa , Ecótipo , Evolução Molecular , Fluxo Gênico , Pool Gênico , Introgressão Genética , Anotação de Sequência Molecular , Panicum/classificação , Panicum/crescimento & desenvolvimento , Estados Unidos
6.
Nat Clim Chang ; 9: 852-857, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35069807

RESUMO

Recent warming in the Arctic, which has been amplified during the winter1-3, greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)4. However, the amount of CO2 released in winter is highly uncertain and has not been well represented by ecosystem models or by empirically-based estimates5,6. Here we synthesize regional in situ observations of CO2 flux from arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1662 Tg C yr-1 from the permafrost region during the winter season (October through April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1032 Tg C yr-1). Extending model predictions to warmer conditions in 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway (RCP) 4.5-and 41% under business-as-usual emissions scenario-RCP 8.5. Our results provide a new baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.

7.
PLoS One ; 8(10): e77880, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205010

RESUMO

Laboratory studies show that introduction of fresh and easily decomposable organic carbon (OC) into soil-water systems can stimulate the decomposition of soil OC (SOC) via priming effects in temperate forests, shrublands, grasslands, and agro-ecosystems. However, priming effects are still not well understood in the field setting for temperate ecosystems and virtually nothing is known about priming effects (e.g., existence, frequency, and magnitude) in boreal ecosystems. In this study, a coupled dissolved OC (DOC) transport and microbial biomass dynamics model was developed to simultaneously simulate co-occurring hydrological, physical, and biological processes and their interactions in soil pore-water systems. The developed model was then used to examine the importance of priming effects in two black spruce forest soils, with and without underlying permafrost. Our simulations showed that priming effects were strongly controlled by the frequency and intensity of DOC input, with greater priming effects associated with greater DOC inputs. Sensitivity analyses indicated that priming effects were most sensitive to variations in the quality of SOC, followed by variations in microbial biomass dynamics (i.e., microbial death and maintenance respiration), highlighting the urgent need to better discern these key parameters in future experiments and to consider these dynamics in existing ecosystem models. Water movement carries DOC to deep soil layers that have high SOC stocks in boreal soils. Thus, greater priming effects were predicted for the site with favorable water movement than for the site with limited water flow, suggesting that priming effects might be accelerated for sites where permafrost degradation leads to the formation of dry thermokarst.


Assuntos
Biomassa , Carbono/química , Ecossistema , Picea/fisiologia , Solo/química , Água/química , Simulação por Computador
8.
New Phytol ; 199(2): 420-430, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23646982

RESUMO

The relative use of new photosynthate compared to stored carbon (C) for the production and maintenance of fine roots, and the rate of C turnover in heterogeneous fine-root populations, are poorly understood. We followed the relaxation of a (13)C tracer in fine roots in a Liquidambar styraciflua plantation at the conclusion of a free-air CO(2) enrichment experiment. Goals included quantifying the relative fractions of new photosynthate vs stored C used in root growth and root respiration, as well as the turnover rate of fine-root C fixed during [CO(2)] fumigation. New fine-root growth was largely from recent photosynthate, while nearly one-quarter of respired C was from a storage pool. Changes in the isotopic composition of the fine-root population over two full growing seasons indicated heterogeneous C pools; < 10% of root C had a residence time < 3 months, while a majority of root C had a residence time > 2 yr. Compared to a one-pool model, a two-pool model for C turnover in fine roots (with 5 and 0.37 yr(-1) turnover times) doubles the fine-root contribution to forest NPP (9-13%) and supports the 50% root-to-soil transfer rate often used in models.


Assuntos
Carbono/farmacologia , Liquidambar/crescimento & desenvolvimento , Liquidambar/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Dióxido de Carbono/farmacologia , Isótopos de Carbono , Respiração Celular/efeitos dos fármacos , Liquidambar/efeitos dos fármacos , Modelos Biológicos , Raízes de Plantas/citologia
10.
Ecology ; 87(1): 15-25, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16634293

RESUMO

A hypothesis for progressive nitrogen limitation (PNL) proposes that net primary production (NPP) will decline through time in ecosystems subjected to a step-function increase in atmospheric CO2. The primary mechanism driving this response is a rapid rate of N immobilization by plants and microbes under elevated CO2 that depletes soils of N, causing slower rates of N mineralization. Under this hypothesis, there is little long-term stimulation of NPP by elevated CO2 in the absence of exogenous inputs of N. We tested this hypothesis using data on the pools and fluxes of C and N in tree biomass, microbes, and soils from 1997 through 2002 collected at the Duke Forest free-air CO2 enrichment (FACE) experiment. Elevated CO2 stimulated NPP by 18-24% during the first six years of this experiment. Consistent with the hypothesis for PNL, significantly more N was immobilized in tree biomass and in the O horizon under elevated CO2. In contrast to the PNL hypothesis, microbial-N immobilization did not increase under elevated CO2, and although the rate of net N mineralization declined through time, the decline was not significantly more rapid under elevated CO2. Ecosystem C-to-N ratios widened more rapidly under elevated CO2 than ambient CO2 indicating a more rapid rate of C fixation per unit of N, a processes that could delay PNL in this ecosystem. Mass balance calculations demonstrated a large accrual of ecosystem N capital. Is PNL occurring in this ecosystem and will NPP decline to levels under ambient CO2? The answer depends on the relative strength of tree biomass and O-horizon N immobilization vs. widening C-to-N ratios and ecosystem-N accrual as processes that drive and delay PNL, respectively. Only direct observations through time will definitively answer this question.


Assuntos
Dióxido de Carbono/fisiologia , Ecossistema , Nitrogênio/metabolismo , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Bactérias/química , Biomassa , Nitrogênio/análise , Solo/análise , Microbiologia do Solo , Fatores de Tempo , Árvores/química , Madeira
11.
Glob Chang Biol ; 11(12): 2057-2064, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34991286

RESUMO

The general lack of significant changes in mineral soil C stocks during CO2 -enrichment experiments has cast doubt on predictions that increased soil C can partially offset rising atmospheric CO2 concentrations. Here, we show, through meta-analysis techniques, that these experiments collectively exhibited a 5.6% increase in soil C over 2-9 years, at a median rate of 19 g C m-2 yr-1 . We also measured C accrual in deciduous forest and grassland soils, at rates exceeding 40 g C m-2 yr-1 for 5-8 years, because both systems responded to CO2 enrichment with large increases in root production. Even though native C stocks were relatively large, over half of the accrued C at both sites was incorporated into microaggregates, which protect C and increase its longevity. Our data, in combination with the meta-analysis, demonstrate the potential for mineral soils in diverse temperate ecosystems to store additional C in response to CO2 enrichment.

12.
Science ; 302(5649): 1385-7, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-14631037

RESUMO

Estimates of forest net primary production (NPP) demand accurate estimates of root production and turnover. We assessed root turnover with the use of an isotope tracer in two forest free-air carbon dioxide enrichment experiments. Growth at elevated carbon dioxide did not accelerate root turnover in either the pine or the hardwood forest. Turnover of fine root carbon varied from 1.2 to 9 years, depending on root diameter and dominant tree species. These long turnover times suggest that root production and turnover in forests have been overestimated and that sequestration of anthropogenic atmospheric carbon in forest soils may be lower than currently estimated.


Assuntos
Carbono/análise , Liquidambar/fisiologia , Pinus taeda/fisiologia , Raízes de Plantas/fisiologia , Solo/análise , Árvores , Atmosfera , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Ecossistema , Liquidambar/crescimento & desenvolvimento , Liquidambar/metabolismo , North Carolina , Pinus taeda/crescimento & desenvolvimento , Pinus taeda/metabolismo , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Estações do Ano , Tennessee , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...