Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 2709, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526800

RESUMO

Defining priority areas and risk evaluation is of utmost relevance for endangered species` conservation. For the blue whale (Balaenoptera musculus), we aim to assess environmental habitat selection drivers, priority areas for conservation and overlap with vessel traffic off northern Chilean Patagonia (NCP). For this, we implemented a single-step continuous-time correlated-random-walk model which accommodates observational error and movement parameters variation in relation to oceanographic variables. Spatially explicit predictions of whales' behavioral responses were combined with density predictions from previous species distribution models (SDM) and vessel tracking data to estimate the relative probability of vessels encountering whales and identifying areas where interaction is likely to occur. These estimations were conducted independently for the aquaculture, transport, artisanal fishery, and industrial fishery fleets operating in NCP. Blue whale movement patterns strongly agreed with SDM results, reinforcing our knowledge regarding oceanographic habitat selection drivers. By combining movement and density modeling approaches we provide a stronger support for purported priority areas for blue whale conservation and how they overlap with the main vessel traffic corridor in the NCP. The aquaculture fleet was one order of magnitude larger than any other fleet, indicating it could play a decisive role in modulating potential negative vessel-whale interactions within NCP.


Assuntos
Balaenoptera , Conservação dos Recursos Naturais/métodos , Ecossistema , Espécies em Perigo de Extinção , Modelos Teóricos , Navios , Animais , Chile
2.
Mov Ecol ; 7: 26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360521

RESUMO

BACKGROUND: Species distribution models have shown that blue whales (Balaenoptera musculus) occur seasonally in high densities in the most biologically productive regions of the California Current Ecosystem (CCE). Satellite telemetry studies have additionally shown that blue whales in the CCE regularly switch between behavioral states consistent with area-restricted searching (ARS) and transiting, indicative of foraging in and moving among prey patches, respectively. However, the relationship between the environmental correlates that serve as a proxy of prey relative to blue whale movement behavior has not been quantitatively assessed. METHODS: We investigated the association between blue whale behavioral state and environmental predictors in the coastal environments of the CCE using a long-term satellite tracking data set (72 tagged whales; summer-fall months 1998-2008), and predicted the likelihood of ARS behavior at tracked locations using nonparametric multiplicative regression models. The models were built using data from years of cool, productive conditions and validated against years of warm, low-productivity conditions. RESULTS: The best model contained four predictors: chlorophyll-a, sea surface temperature, and seafloor aspect and depth. This model estimated highest ARS likelihood (> 0.8) in areas with high chlorophyll-a levels (> 0.65 mg/m3), intermediate sea surface temperatures (11.6-17.5 °C), and shallow depths (< 850 m). Overall, the model correctly predicted behavioral state throughout the coastal environments of the CCE, while the validation indicated an ecosystem-wide reduction in ARS likelihood during warm years, especially in the southern portion. For comparison, a spatial coordinates model (longitude × latitude) performed slightly better than the environmental model during warm years, providing further evidence that blue whales exhibit strong foraging site fidelity, even when conditions are not conducive to successful foraging. CONCLUSIONS: We showed that blue whale behavioral state in the CCE was predictable from environmental correlates and that ARS behavior was most prevalent in regions of known high whale density, likely reflecting where large prey aggregations consistently develop in summer-fall. Our models of whale movement behavior enhanced our understanding of species distribution by further indicating where foraging was more likely, which could be of value in the identification of key regions of importance for endangered species in management considerations. The models also provided evidence that decadal-scale environmental fluctuations can drive shifts in the distribution and foraging success of this blue whale population.

3.
Proc Natl Acad Sci U S A ; 116(12): 5582-5587, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30804188

RESUMO

In terrestrial systems, the green wave hypothesis posits that migrating animals can enhance foraging opportunities by tracking phenological variation in high-quality forage across space (i.e., "resource waves"). To track resource waves, animals may rely on proximate cues and/or memory of long-term average phenologies. Although there is growing evidence of resource tracking in terrestrial migrants, such drivers remain unevaluated in migratory marine megafauna. Here we present a test of the green wave hypothesis in a marine system. We compare 10 years of blue whale movement data with the timing of the spring phytoplankton bloom resulting in increased prey availability in the California Current Ecosystem, allowing us to investigate resource tracking both contemporaneously (response to proximate cues) and based on climatological conditions (memory) during migrations. Blue whales closely tracked the long-term average phenology of the spring bloom, but did not track contemporaneous green-up. In addition, blue whale foraging locations were characterized by low long-term habitat variability and high long-term productivity compared with contemporaneous measurements. Results indicate that memory of long-term average conditions may have a previously underappreciated role in driving migratory movements of long-lived species in marine systems, and suggest that these animals may struggle to respond to rapid deviations from historical mean environmental conditions. Results further highlight that an ecological theory of migration is conserved across marine and terrestrial systems. Understanding the drivers of animal migration is critical for assessing how environmental changes will affect highly mobile fauna at a global scale.


Assuntos
Migração Animal/fisiologia , Balaenoptera/fisiologia , Animais , Balaenoptera/psicologia , California , Ecossistema , Memória/fisiologia , Movimento
4.
PLoS One ; 14(1): e0209324, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629597

RESUMO

Fin whales (Balaenoptera physalus) have a global distribution, but the population inhabiting the Gulf of California (GoC) is thought to be geographically and genetically isolated. However, their distribution and movements are poorly known. The goal of this study was to describe fin whale movements for the first time from 11 Argos satellite tags deployed in the southwest GoC in March 2001. A Bayesian Switching State-Space Model was applied to obtain improved locations and to characterize movement behavior as either "area-restricted searching" (indicative of patch residence, ARS) or "transiting" (indicative of moving between patches). Model performance was assessed with convergence diagnostics and by examining the distribution of the deviance and the behavioral parameters from Markov Chain Monte Carlo models. ARS was the predominant mode behavior 83% of the time during both the cool (December-May) and warm seasons (June-November), with slower travel speeds (mean = 0.84 km/h) than during transiting mode (mean = 3.38 km/h). We suggest ARS mode indicates either foraging activities (year around) or reproductive activities during the winter (cool season). We tagged during the cool season, when the whales were located in the Loreto-La Paz Corridor in the southwestern GoC, close to the shoreline. As the season progressed, individuals moved northward to the Midriff Islands and the upper gulf for the warm season, much farther from shore. One tag lasted long enough to document a whale's return to Loreto the following cool season. One whale that was originally of undetermined sex, was tagged in the Bay of La Paz and was photographed 10 years later with a calf in the nearby San Jose Channel, suggesting seasonal site fidelity. The tagged whales moved along the western GoC to the upper gulf seasonally and did not transit to the eastern GoC south of the Midriff Islands. No tagged whales left the GoC, providing supporting evidence that these fin whales are a resident population.


Assuntos
Baleia Comum/fisiologia , Migração Animal/fisiologia , Animais , Teorema de Bayes , Comportamento Animal/fisiologia , Feminino , Masculino , Cadeias de Markov , México , Modelos Biológicos , Método de Monte Carlo , Oceano Pacífico , Dinâmica Populacional , Comunicações Via Satélite , Estações do Ano , Telemetria
5.
Nat Ecol Evol ; 2(10): 1571-1578, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30177802

RESUMO

During their migrations, marine predators experience varying levels of protection and face many threats as they travel through multiple countries' jurisdictions and across ocean basins. Some populations are declining rapidly. Contributing to such declines is a failure of some international agreements to ensure effective cooperation by the stakeholders responsible for managing species throughout their ranges, including in the high seas, a global commons. Here we use biologging data from marine predators to provide quantitative measures with great potential to inform local, national and international management efforts in the Pacific Ocean. We synthesized a large tracking data set to show how the movements and migratory phenology of 1,648 individuals representing 14 species-from leatherback turtles to white sharks-relate to the geopolitical boundaries of the Pacific Ocean throughout species' annual cycles. Cumulatively, these species visited 86% of Pacific Ocean countries and some spent three-quarters of their annual cycles in the high seas. With our results, we offer answers to questions posed when designing international strategies for managing migratory species.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Cooperação Internacional , Oceanos e Mares , Oceano Pacífico
6.
Mol Ecol ; 27(11): 2604-2619, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29675902

RESUMO

Mitochondrial DNA has been heavily utilized in phylogeography studies for several decades. However, underlying patterns of demography and phylogeography may be misrepresented due to coalescence stochasticity, selection, variation in mutation rates and cultural hitchhiking (linkage of genetic variation to culturally-transmitted traits affecting fitness). Cultural hitchhiking has been suggested as an explanation for low genetic diversity in species with strong social structures, counteracting even high mobility, abundance and limited barriers to dispersal. One such species is the sperm whale, which shows very limited phylogeographic structure and low mtDNA diversity despite a worldwide distribution and large population. Here, we use analyses of 175 globally distributed mitogenomes and three nuclear genomes to evaluate hypotheses of a population bottleneck/expansion vs. a selective sweep due to cultural hitchhiking or selection on mtDNA as the mechanism contributing to low worldwide mitochondrial diversity in sperm whales. In contrast to mtDNA control region (CR) data, mitogenome haplotypes are largely ocean-specific, with only one of 80 shared between the Atlantic and Pacific. Demographic analyses of nuclear genomes suggest low mtDNA diversity is consistent with a global reduction in population size that ended approximately 125,000 years ago, correlated with the Eemian interglacial. Phylogeographic analysis suggests that extant sperm whales descend from maternal lineages endemic to the Pacific during the period of reduced abundance and have subsequently colonized the Atlantic several times. Results highlight the apparent impact of past climate change, and suggest selection and hitchhiking are not the sole processes responsible for low mtDNA diversity in this highly social species.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/genética , Variação Genética/genética , Mitocôndrias/genética , Cachalote/genética , Animais , Demografia , Genética Populacional/métodos , Haplótipos/genética , Filogenia , Filogeografia/métodos , Densidade Demográfica
7.
Am Nat ; 191(2): E40-E56, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29351020

RESUMO

Integrating behavior and physiology is critical to formulating new hypotheses on the evolution of animal life-history strategies. Migratory capital breeders acquire most of the energy they need to sustain migration, gestation, and lactation before parturition. Therefore, when predicting the impact of environmental variation on such species, a mechanistic understanding of the physiology of their migratory behavior is required. Using baleen whales as a model system, we developed a dynamic state variable model that captures the interplay among behavioral decisions, energy, reproductive needs, and the environment. We applied the framework to blue whales (Balaenoptera musculus) in the eastern North Pacific Ocean and explored the effects of environmental and anthropogenic perturbations on female reproductive success. We demonstrate the emergence of migration to track prey resources, enabling us to quantify the trade-offs among capital breeding, body condition, and metabolic expenses. We predict that periodic climatic oscillations affect reproductive success less than unprecedented environmental changes do. The effect of localized, acute anthropogenic impacts depended on whales' behavioral response to the disturbance; chronic, but weaker, disturbances had little effect on reproductive success. Because we link behavior and vital rates by modeling individuals' energetic budgets, we provide a general framework to investigate the ecology of migration and assess the population consequences of disturbance, while identifying critical knowledge gaps.


Assuntos
Migração Animal/fisiologia , Balaenoptera/fisiologia , Comportamento Alimentar , Modelos Biológicos , Animais , Balaenoptera/psicologia , Euphausiacea , Feminino , Gravidez
8.
Ecol Evol ; 7(19): 7822-7837, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29043037

RESUMO

Here, we describe the diving behavior of sperm whales (Physeter macrocephalus) using the Advanced Dive Behavior (ADB) tag, which records depth data at 1-Hz resolution and GPS-quality locations for over 1 month, before releasing from the whale for recovery. A total of 27 ADB tags were deployed on sperm whales in the central Gulf of California, Mexico, during spring 2007 and 2008, of which 10 were recovered for data download. Tracking durations of all tags ranged from 0 to 34.5 days (median = 2.3 days), and 0.6 to 26.6 days (median = 5.0 days) for recovered tags. Recovered tags recorded a median of 50.8 GPS-quality locations and 42.6 dives per day. Dive summary metrics were generated for archived dives and were subsequently classified into six categories using hierarchical cluster analysis. A mean of 77% of archived dives per individual were one of four dive categories with median Maximum Dive Depth >290 m (V-shaped, Mid-water, Benthic, or Variable), likely associated with foraging. Median Maximum Dive Depth was <30 m for the other two categories (Short- and Long-duration shallow dives), likely representing socializing or resting behavior. Most tagged whales remained near the tagging area during the tracking period, but one moved north of Isla Tiburón, where it appeared to regularly dive to, and travel along the seafloor. Three whales were tagged on the same day in 2007 and subsequently traveled in close proximity (<1 km) for 2 days. During this period, the depth and timing of their dives were not coordinated, suggesting they were foraging on a vertically heterogeneous prey field. The multiweek dive records produced by ADB tags enabled us to generate a robust characterization of the diving behavior, activity budget, and individual variation for an important predator of the mesopelagos over temporal and spatial scales not previously possible.

9.
Ecol Evol ; 7(2): 585-595, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28116055

RESUMO

The development of high-resolution archival tag technologies has revolutionized our understanding of diving behavior in marine taxa such as sharks, turtles, and seals during their wide-ranging movements. However, similar applications for large whales have lagged behind due to the difficulty of keeping tags on the animals for extended periods of time. Here, we present a novel configuration of a transdermally attached biologging device called the Advanced Dive Behavior (ADB) tag. The ADB tag contains sensors that record hydrostatic pressure, three-axis accelerometers, magnetometers, water temperature, and light level, all sampled at 1 Hz. The ADB tag also collects Fastloc GPS locations and can send dive summary data through Service Argos, while staying attached to a whale for typical periods of 3-7 weeks before releasing for recovery and subsequent data download. ADB tags were deployed on sperm whales (Physeter macrocephalus; N = 46), blue whales (Balaenoptera musculus; N = 8), and fin whales (B. physalus; N = 5) from 2007 to 2015, resulting in attachment durations from 0 to 49.6 days, and recording 31 to 2,539 GPS locations and 27 to 2,918 dives per deployment. Archived dive profiles matched well with published dive shapes of each species from short-term records. For blue and fin whales, feeding lunges were detected using peaks in accelerometer data and matched corresponding vertical excursions in the depth record. In sperm whales, rapid orientation changes in the accelerometer data, often during the bottom phase of dives, were likely related to prey pursuit, representing a relative measure of foraging effort. Sperm whales were documented repeatedly diving to, and likely foraging along, the seafloor. Data from the temperature sensor described the vertical structure of the water column in all three species, extending from the surface to depths >1,600 m. In addition to providing information needed to construct multiweek time budgets, the ADB tag is well suited to studying the effects of anthropogenic sound on whales by allowing for pre- and post-exposure monitoring of the whale's dive behavior. This tag begins to bridge the gap between existing long-duration but low-data throughput tags, and short-duration, high-resolution data loggers.

10.
Biol Lett ; 11(4): 20150071, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25878049

RESUMO

Western North Pacific gray whales (WGWs), once considered extinct, are critically endangered with unknown migratory routes and reproductive areas. We attached satellite-monitored tags to seven WGWs on their primary feeding ground off Sakhalin Island, Russia, three of which subsequently migrated to regions occupied by non-endangered eastern gray whales (EGWs). A female with the longest-lasting tag visited all three major EGW reproductive areas off Baja California, Mexico, before returning to Sakhalin Island the following spring. Her 22 511 km round-trip is the longest documented mammal migration and strongly suggests that some presumed WGWs are actually EGWs foraging in areas historically attributed to WGWs. The observed migration routes provide evidence of navigational skills across open water that break the near-shore north-south migratory paradigm of EGWs. Despite evidence of genetic differentiation, these tagging data indicate that the population identity of whales off Sakhalin Island needs further evaluation.


Assuntos
Migração Animal , Baleias/fisiologia , Animais , Espécies em Perigo de Extinção , Feminino , Masculino , Oceano Pacífico , Estações do Ano
11.
PLoS One ; 9(7): e102959, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25054829

RESUMO

Mortality and injuries caused by ship strikes in U.S. waters are a cause of concern for the endangered population of blue whales (Balaenoptera musculus) occupying the eastern North Pacific. We sought to determine which areas along the U.S. West Coast are most important to blue whales and whether those areas change inter-annually. Argos-monitored satellite tags were attached to 171 blue whales off California during summer/early fall from 1993 to 2008. We analyzed portions of the tracks that occurred within U.S. Exclusive Economic Zone waters and defined the 'home range' (HR) and 'core areas' (CAU) as the 90% and 50% fixed kernel density distributions, respectively, for each whale. We used the number of overlapping individual HRs and CAUs to identify areas of highest use. Individual HR and CAU sizes varied dramatically, but without significant inter-annual variation despite covering years with El Niño and La Niña conditions. Observed within-year differences in HR size may represent different foraging strategies for individuals. The main areas of HR and CAU overlap among whales were near highly productive, strong upwelling centers that were crossed by commercial shipping lanes. Tagged whales generally departed U.S. Exclusive Economic Zone waters from mid-October to mid-November, with high variability among individuals. One 504-d track allowed HR and CAU comparisons for the same individual across two years, showing similar seasonal timing, and strong site fidelity. Our analysis showed how satellite-tagged blue whales seasonally used waters off the U.S. West Coast, including high-risk areas. We suggest possible modifications to existing shipping lanes to reduce the likelihood of collisions with vessels.


Assuntos
Distribuição Animal , Migração Animal , Balaenoptera , Espécies em Perigo de Extinção , Animais , Oceano Pacífico
12.
Conserv Biol ; 28(2): 604-15, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24495092

RESUMO

Humpback whales (Megaptera novaeangliae) are managed by the International Whaling Commission as 7 primary populations that breed in the tropics and migrate to 6 feeding areas around the Antarctic. There is little information on individual movements within breeding areas or migratory connections to feeding grounds. We sought to better understand humpback whale habitat use and movements at breeding areas off West Africa, and during the annual migration to Antarctic feeding areas. We also assessed potential overlap between whale habitat and anthropogenic activities. We used Argos satellite-monitored radio tags to collect data on 13 animals off Gabon, a primary humpback whale breeding area. We quantified habitat use for 3 cohorts of whales and used a state-space model to determine transitions in the movement behavior of individuals. We developed a spatial metric of overlap between whale habitat and models of cumulative human activities, including oil platforms, toxicants, and shipping. We detected strong heterogeneity in movement behavior over time that is consistent with previous genetic evidence of multiple populations in the region. Breeding areas for humpback whales in the eastern Atlantic were extensive and extended north of Gabon late in the breeding season. We also observed, for the first time, direct migration between West Africa and sub-Antarctic feeding areas. Potential overlap of whale habitat with human activities was the highest in exclusive economic zones close to shore, particularly in areas used by both individual whales and the hydrocarbon industry. Whales potentially overlapped with different activities during each stage of their migration, which makes it difficult to implement mitigation measures over their entire range. Our results and existing population-level data may inform delimitation of populations and actions to mitigate potential threats to whales as part of local, regional, and international management of highly migratory marine species.


Assuntos
Migração Animal , Conservação dos Recursos Naturais , Jubarte/fisiologia , Animais , Oceano Atlântico , Comportamento Alimentar , Feminino , Pesqueiros , Gabão , Masculino , Tecnologia de Sensoriamento Remoto
13.
Nat Commun ; 4: 2688, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24162104

RESUMO

Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact (CUI) on marine predators by combining electronic tracking data of eight protected predator species (n=685 individuals) in the California Current Ecosystem with data on 24 anthropogenic stressors. We show significant variation in CUI with some of the highest impacts within US National Marine Sanctuaries. High variation in underlying species and cumulative impact distributions means that neither alone is sufficient for effective spatial management. Instead, comprehensive management approaches accounting for both cumulative human impacts and trade-offs among multiple stressors must be applied in planning the use of marine resources.


Assuntos
Migração Animal , Atividades Humanas , Dinâmica Populacional , Comportamento Predatório/fisiologia , Animais , Aves , California , Conservação dos Recursos Naturais , Ecologia , Ecossistema , Geografia , Humanos , Biologia Marinha , Oceano Pacífico , Leões-Marinhos , Focas Verdadeiras , Especificidade da Espécie , Tartarugas , Baleias
15.
Mol Ecol ; 21(3): 732-44, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21951561

RESUMO

The evolution of stable social groups can be promoted by both indirect and direct fitness benefits. Sperm whales (Physeter macrocephalus) are highly social, with a hierarchical social structure based around core groups of adult females and subadults, a rare level of complexity among mammals. We combined long-term satellite tracking (ranging from 11 to 607 days) of 51 individual sperm whales with genetic kinship analysis to assess the pattern of kin associations within and among coherent social units. Unlike findings for other species with similar social structure, we find no consistent correlation between kinship and association apart from close associations between two pairs of first-order relatives. A third pair of first-order relatives did not associate, and overall, the mean relatedness was the same within as among social groups. However, social behaviour can also be promoted by ecological factors such as resource dispersion. We assessed putative foraging behaviour during travel from the satellite-tracking data, which suggested that prey resources were dispersed and unpredictable, a condition that could promote living in groups.


Assuntos
Migração Animal , Comportamento Cooperativo , Cachalote , Animais , DNA Mitocondrial/genética , Hierarquia Social , Masculino , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Linhagem , Análise para Determinação do Sexo , Telemetria
16.
J Acoust Soc Am ; 123(3): 1318-28, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18345820

RESUMO

This study presents the first target strength measurements of Dosidicus gigas, a large squid that is a key predator, a significant prey, and the target of an important fishery. Target strength of live, tethered squid was related to mantle length with values standardized to the length squared of -62.0, -67.4, -67.9, and -67.6 dB at 38, 70, 120, and 200 kHz, respectively. There were relatively small differences in target strength between dorsal and anterior aspects and none between live and freshly dead squid. Potential scattering mechanisms in squid have been long debated. Here, the reproductive organs had little effect on squid target strength. These data support the hypothesis that the pen may be an important source of squid acoustic scattering. The beak, eyes, and arms, probably via the sucker rings, also play a role in acoustic scattering though their effects were small and frequency specific. An unexpected source of scattering was the cranium of the squid which provided a target strength nearly as high as that of the entire squid though the mechanism remains unclear. Our in situ measurements of the target strength of free-swimming squid support the use of the values presented here in D. gigas assessment studies.


Assuntos
Acústica , Decapodiformes , Animais , Fenômenos Biomecânicos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...