Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 46(3): 592-595, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528416

RESUMO

Mechanical loss of dielectric mirror coatings sets fundamental limits for both gravitational wave detectors and cavity-stabilized optical local oscillators for atomic clocks. Two approaches are used to determine the mechanical loss: ringdown measurements of the coating quality factor and direct measurement of the coating thermal noise. Here we report a systematic study of the mirror thermal noise at 4, 16, 124, and 300 K by operating reference cavities at these temperatures. The directly measured thermal noise is used to extract the mechanical loss for SiO2/Ta2O5 coatings, which are compared with previously reported values.

2.
Phys Rev Lett ; 123(17): 173201, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31702265

RESUMO

We report on the first timescale based entirely on optical technology. Existing timescales, including those incorporating optical frequency standards, rely exclusively on microwave local oscillators owing to the lack of an optical oscillator with the required frequency predictability and stability for reliable steering. We combine a cryogenic silicon cavity exhibiting improved long-term stability and an accurate ^{87}Sr lattice clock to form a timescale that outperforms them all. Our timescale accumulates an estimated time error of only 48±94 ps over 34 days of operation. Our analysis indicates that this timescale is capable of reaching a stability below 1×10^{-17} after a few months of averaging, making timekeeping at the 10^{-18} level a realistic prospect.

3.
Adv Mater ; 25(30): 4146-51, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23716462

RESUMO

Self-assembled monolayers of aromatic molecules on copper substrates can be converted into high-quality single-layer graphene using low-energy electron irradiation and subsequent annealing. This two-dimensional solid state transformation is characterized on the atomic scale and the physical and chemical properties of the formed graphene sheets are studied by complementary microscopic and spectroscopic techniques and by electrical transport measurements. As substrates, Cu(111) single crystals and the technologically relevant polycrystalline copper foils are successfully used.


Assuntos
Cobre/química , Grafite/química , Hidrocarbonetos Aromáticos/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Simulação por Computador , Cristalização/métodos , Substâncias Macromoleculares/química , Teste de Materiais , Modelos Químicos , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA