Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 289(1984): 20221573, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36196545

RESUMO

The genomic landscape of divergence-the distribution of differences among populations or species across the genome-is increasingly characterized to understand the role that microevolutionary forces such as natural selection and recombination play in causing and maintaining genetic divergence. This line of inquiry has also revealed chromosome structure variation to be an important factor shaping the landscape of adaptive genetic variation. Owing to a high prevalence of chromosome structure variation and the strong pressure for local adaptation necessitated by their sessile nature, bivalve molluscs are an ideal taxon for exploring the relationship between chromosome structure variation and local adaptation. Here, we report a population genomic survey of king scallop (Pecten maximus) across its natural range in the northeastern Atlantic Ocean, using a recent chromosome-level genome assembly. We report the presence of at least three large (12-22 Mb), putative chromosomal inversions associated with sea surface temperature and whose frequencies are in contrast to neutral population structure. These results highlight a potentially large role for recombination-suppressing chromosomal inversions in local adaptation and suggest a hypothesis to explain the maintenance of differences in reproductive timing found at relatively small spatial scales across king scallop populations.


Assuntos
Inversão Cromossômica , Pecten , Adaptação Fisiológica/genética , Animais , Seleção Genética , Temperatura
2.
Viruses ; 13(12)2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34960697

RESUMO

The nonvirulent infectious salmon anaemia virus (ISAV-HPR0) is the putative progenitor for virulent-ISAV, and a potential risk factor for the development of infectious salmon anaemia (ISA). Understanding the transmission dynamics of ISAV-HPR0 is fundamental to proper management and mitigation strategies. Here, we demonstrate that ISAV-HPR0 causes prevalent and transient infections in all three production stages of Atlantic salmon in the Faroe Islands. Phylogenetic analysis of the haemagglutinin-esterase gene from 247 salmon showed a clear geographical structuring into two significantly distinct HPR0-subgroups, which were designated G2 and G4. Whereas G2 and G4 co-circulated in marine farms, Faroese broodfish were predominantly infected by G2, and smolt were predominantly infected by G4. This infection pattern was confirmed by our G2- and G4-specific RT-qPCR assays. Moreover, the HPR0 variants detected in Icelandic and Norwegian broodfish were never detected in the Faroe Islands, despite the extensive import of ova from both countries. Accordingly, the vertical transmission of HPR0 from broodfish to progeny is uncommon. Phylogenetic and statistical analysis suggest that HPR0 persists in the smolt farms as "house-strains", and that new HPR0 variants are occasionally introduced from the marine environment, probably by HPR0-contaminated sea-spray. Thus, high biosecurity-including water and air intake-is required to avoid the introduction of pathogens to the smolt farms.


Assuntos
Doenças dos Peixes/transmissão , Pesqueiros , Transmissão Vertical de Doenças Infecciosas/veterinária , Isavirus/patogenicidade , Infecções por Orthomyxoviridae/veterinária , Salmo salar/virologia , Animais , Biosseguridade , Dinamarca , Doenças dos Peixes/virologia , Isavirus/classificação , Isavirus/genética , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Filogenia , Virulência
3.
Dis Aquat Organ ; 142: 203-211, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33331288

RESUMO

Salmon pancreas disease virus, more commonly known as salmonid alphavirus (SAV), is a single-stranded positive sense RNA virus and the causative agent of pancreas disease and sleeping disease in salmonids. In this study, a unique strain of SAV previously isolated from ballan wrasse was subjected to whole genome sequencing using nanopore sequencing. In order to accurately examine the evolutionary history of this strain in comparison to other SAV strains, a partitioned phylogenetic analysis was performed to account for variation in the rate of evolution for both individual genes and codon positions. Partitioning the genome alignments almost doubled the observed branch lengths in the phylogenetic tree when compared to the more common approach of applying one model of substitution across the genome and significantly increased the statistical fit of the best-fitting models of nucleotide substitution. Based on the genomic data, a valid case can be made for the viral strain examined in this study to be considered a new SAV genotype. In addition, this study adds to a growing number of studies in which SAV has been found to infect non-salmonid fish, and as such we have suggested that the viral species name be amended to the more inclusive 'piscine alphavirus'.


Assuntos
Infecções por Alphavirus , Alphavirus , Doenças dos Peixes , Nanoporos , Salmo salar , Salmonidae , Alphavirus/genética , Infecções por Alphavirus/veterinária , Animais , Genótipo , Filogenia , Sequenciamento Completo do Genoma/veterinária
4.
Front Microbiol ; 11: 740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390982

RESUMO

Understanding the dynamics of pathogen transfer in aquaculture systems is essential to manage and mitigate disease outbreaks. The goal of this study was to understand recent transmission dynamics of salmonid alphavirus (SAV) in Norway. SAV causes significant economic impacts on farmed salmonids in European aquaculture. SAV is classified into six subtypes, with Norway having ongoing epidemics of SAV subtypes 2 and 3. These two viral subtypes are present in largely distinct geographic regions of Norway, with SAV2 present in Trondelag, SAV3 in Rogaland, Sogn og Fjordane, and Hordaland, and Møre og Romsdal having outbreaks of both subtypes. To determine likely transmission routes of Norwegian SAV an established Nanopore amplicon sequencing approach was used in the current study. After confirming the accuracy of this approach for distinguishing subtype level co-infections of SAV2 and SAV3, a hypothetical possibility in regions of neighboring epidemics, twenty-four SAV3 genomes were sequenced to characterize the current genetic diversity of SAV3 in Norwegian aquaculture. Sequencing was performed on naturally infected heart tissues originating from a range of geographic locations sampled between 2016 and 2019. Phylogenetic analyses revealed that the currently active SAV3 strains sampled comprise several distinct lineages sharing an ancestor that existed ∼15 years ago (95% HPD, 12.51-17.7 years) and likely in Hordaland. At least five of these lineages have not shared a common ancestor for 7.85 years (95% HPD, 5.39-10.96 years) or more. Furthermore, the ancestor of the strains that were sampled outside of Hordaland (Sogn of Fjordane and Rogaland) existed less than 8 years ago, indicating a lack of long-term viral reservoirs in these counties. This evident lack of geographically distinct subclades is compatible with a source-sink transmission dynamic explaining the long-term movements of SAV around Norway. Such anthropogenic transport of the virus indicates that at least for sink counties, biosecurity strategies might be effective in mitigating the ongoing SAV epidemic. Finally, genomic analyses of SAV sequences were performed, offering novel insights into the prevalence of SAV genomes containing defective deletions. Overall, this study improves our understanding of the recent transmission dynamics and biology of the SAV epidemic affecting Norwegian aquaculture.

5.
Dis Aquat Organ ; 137(2): 81-87, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31854326

RESUMO

The present study explored the use of 2 common genetic markers, the mitochondrial cytochrome oxidase I (COI) and the ribosomal internal transcribed spacer (ITS) to infer the relationship between geographically distant isolates of the protozoan gill parasite Neoparamoeba perurans, the agent responsible for amoebic gill disease in farmed Atlantic salmon worldwide. Present data confirmed that the ITS marker is suitable for Neoparamoeba species discrimination; however, it is not recommended as a population marker due to the presence of multiple copies of ITS within both N. perurans clonal and polycultures. On the other hand, in the partial COI gene analysed here, a low variability was observed, with 8 haplotypes recovered from N. perurans samples collected from Europe (Ireland, Norway, Scotland) and Tasmania (Australia). In Europe, the COI haplotypes which have more recently been detected in aquaculture are different to the haplotypes associated with the original gill disease emergence in Ireland in 1997 and Norway in 2006. The presence of unique COI haplotypes in different continents suggests the presence of multiple distinct reservoirs of the pathogen in both Europe and Tasmania. Isolates from additional geographical locations are required to fully understand the origins and routes for the spread of N. perurans worldwide.


Assuntos
Variação Genética , Amebíase , Animais , Doenças dos Peixes , Brânquias , Salmo salar
6.
Sci Rep ; 8(1): 16307, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397226

RESUMO

Analysis of pathogen genome variation is essential for informing disease management and control measures in farmed animals. For farmed fish, the standard approach is to use PCR and Sanger sequencing to study partial regions of pathogen genomes, with second and third-generation sequencing tools yet to be widely applied. Here we demonstrate rapid and accurate sequencing of two disease-causing viruses affecting global salmonid aquaculture, salmonid alphavirus (SAV) and infectious salmon anaemia virus (ISAV), using third-generation nanopore sequencing on the MinION platform (Oxford Nanopore Technologies). Our approach complements PCR from infected material with MinION sequencing to recover genomic information that matches near perfectly to Sanger-verified references. We use this method to present the first SAV subtype-6 genome, which branches as the sister to all other SAV lineages in a genome-wide phylogenetic reconstruction. MinION sequencing offers an effective strategy for fast, genome-wide analysis of fish viruses, with major potential applications for diagnostics and robust investigations into the origins and spread of disease outbreaks.


Assuntos
Alphavirus/genética , Alphavirus/isolamento & purificação , Isavirus/genética , Isavirus/isolamento & purificação , Nanoporos , Salmonidae/virologia , Sequenciamento Completo do Genoma/métodos , Animais , Aquicultura , Filogenia , Reação em Cadeia da Polimerase , Fatores de Tempo
7.
J Gen Virol ; 99(12): 1567-1581, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30358526

RESUMO

In order to obtain an insight into genomic changes and associated evolution and adaptation of Infectious Pancreatic Necrosis Virus (IPNV), the complete coding genomes of 57 IPNV isolates collected from Scottish aquafarms from 1982 to 2014 were sequenced and analysed. Phylogenetic analysis of the sequenced IPNV strains showed separate clustering of genogroups I, II, III and V. IPNV isolates with genetic reassortment of segment A/B of genogroup III/II were determined. About 59 % of the IPNV isolates belonged to the persistent type and 32 % to the low-virulent type, and only one highly pathogenic strain (1.79 %) was identified. Codon adaptation index calculations indicated that the IPNV major capsid protein VP2 has adapted to its salmonid host. Under-representation of CpG dinucleotides in the IPNV genome to minimize detection by the innate immunity receptors, and observed positive selection in the virulence determination sites of VP2 embedded in the variable region of the main antigenic region, suggest an immune escape mechanism driving virulence evolution. The prevalence of mostly persistent genotypes, together with the assumption of adaptation and immune escape, indicates that IPNV is evolving with the host.


Assuntos
Infecções por Birnaviridae/veterinária , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/virologia , Variação Genética , Vírus da Necrose Pancreática Infecciosa/classificação , Vírus da Necrose Pancreática Infecciosa/genética , Adaptação Biológica , Animais , Aquicultura , Infecções por Birnaviridae/epidemiologia , Infecções por Birnaviridae/virologia , Proteínas do Capsídeo/genética , Códon , Genótipo , Evasão da Resposta Imune , Vírus da Necrose Pancreática Infecciosa/isolamento & purificação , Vírus da Necrose Pancreática Infecciosa/patogenicidade , Epidemiologia Molecular , Prevalência , Escócia/epidemiologia , Seleção Genética , Análise de Sequência de DNA , Virulência , Sequenciamento Completo do Genoma
8.
PLoS One ; 13(7): e0200654, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30001394

RESUMO

The development of diagnostic markers has been a long-standing interest of population geneticists as it allows clarification of taxonomic uncertainties. Historically, there has been much debate on the taxonomic status of species belonging to the Mytilus species complex (M. edulis, M. galloprovincialis and M. trossulus), and whether they are discrete species. We analysed reference pure specimens of M. edulis, M. galloprovincialis and M. trossulus, using Restriction site associated DNA (RAD) sequencing and identified over 6,000 SNP markers separating the three species unambiguously. We developed a panel of diagnostic SNP markers for the genotyping of Mytilus species complex as well as the identification of hybrids and interspecies introgression events in Mytilus species. We validated a panel of twelve diagnostic SNP markers which can be used for species genotyping. Being able to accurately identify species and hybrids within the Mytilus species complex is important for the selective mussel stock management, the exclusion of invasive species, basic physiology and bio-diversity studies.


Assuntos
Técnicas de Genotipagem , Mytilus/genética , Polimorfismo de Nucleotídeo Único , Animais , Marcadores Genéticos , Mytilus/classificação , Especificidade da Espécie
9.
J Gen Virol ; 98(4): 595-606, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28475029

RESUMO

The putatively non-virulent subtype of infectious salmon anaemia virus (ISAV), ISAV-HPR0, is proposed to act as a progenitor and reservoir for all virulent ISAVs and thus represent a potential risk factor for the emergence of infectious salmon anaemia (ISA) disease. Here, we provide the first evidence of genetic and functional evolution from an ISAV-HPR0 variant (FO/07/12) to a low-virulent ISAV virus (FO/121/14) in a Faroese Atlantic salmon marine farm. The FO/121/14 virus infection was not associated with specific clinical signs of ISA and was confined to a single net-pen, while various ISAV-HPR0 subtypes were found circulating in most epidemiologically linked marine and freshwater farms. Sequence analysis of all eight segments revealed that the FO/121/14 virus was identical, apart from a substitution in the fusion (F) gene (Q266L) and a deletion in the haemagglutinin-esterase (HE) gene, to the FO/07/12 variant from a freshwater farm, which supplied smolts exclusively to the FO/121/14-positive net-pen. An immersion challenge with the FO/121/14 virus induced a systemic infection in Atlantic salmon associated with a low mortality and mild clinical signs confirming its low pathogenicity. Our results demonstrate that mutations in the F protein and deletions in the highly polymorphic region (HPR) of the HE protein represent a minimum requirement for ISAV to gain virulence and to switch cell tropism from a localized epithelial infection to a systemic endotheliotropic infection. This documents that ISAV-HPR0 represents a reservoir and risk factor for the emergence of ISA disease.


Assuntos
Evolução Molecular , Doenças dos Peixes/virologia , Isavirus/genética , Infecções por Orthomyxoviridae/veterinária , Animais , Isavirus/classificação , Isavirus/isolamento & purificação , Isavirus/patogenicidade , Mutação , Infecções por Orthomyxoviridae/virologia , Filogenia , Salmo salar , Proteínas Virais/genética , Virulência
10.
Vet Res ; 46: 120, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26490835

RESUMO

All viruses infecting fish must cross the surface mucosal barrier to successfully enter a host. Infectious salmon anaemia virus (ISAV), the causative agent of the economically important infectious salmon anaemia (ISA) in Atlantic salmon, Salmo salar L., has been shown to use the gills as its entry point. However, other entry ports have not been investigated despite the expression of virus receptors on the surface of epithelial cells in the skin, the gastrointestinal (GI) tract and the conjunctiva. Here we investigate the ISAV mucosal infection in Atlantic salmon after experimental immersion (bath) challenge and in farmed fish collected from a confirmed outbreak of ISA in Norway. We show for the first time evidence of early replication in several mucosal surfaces in addition to the gills, including the pectoral fin, skin and GI tract suggesting several potential entry points for the virus. Initially, the infection is localized and primarily infecting epithelial cells, however at later stages it becomes systemic, infecting the endothelial cells lining the circulatory system. Viruses of low and high virulence used in the challenge revealed possible variation in virus progression during infection at the mucosal surfaces.


Assuntos
Doenças dos Peixes/virologia , Isavirus/fisiologia , Mucosa/virologia , Infecções por Orthomyxoviridae/veterinária , Salmo salar , Animais , Aquicultura , Noruega , Infecções por Orthomyxoviridae/virologia , Replicação Viral
11.
Vet Res ; 45: 83, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25143055

RESUMO

Observations from the field and experimental evidence suggest that different strains of infectious salmon anaemia virus (ISAV) can induce disease of varying severity in Atlantic salmon. Variation in host mortality and dissemination of ISAV isolates with high and low virulence was investigated using immersion challenge; from which mortality, pathological, immunohistochemical and preliminary molecular results have been previously published. Here, real-time RT-PCR analysis and statistical modelling have been used to further investigate variation in virus load and the response of four select immune genes. Expression of type I and II interferon (IFN), Mx and γIFN induced protein (γIP) to high and low pathogenic virus infection were examined in gill, heart and anterior kidney. In addition, a novel RNA species-specific assay targeting individual RNA types was used to investigate the separate viral processes of transcription and replication. Unexpectedly, the low virulent ISAV (LVI) replicated and transcribed more rapidly in the gills compared to the highly virulent virus (HVI). Subsequently LVI was able to disseminate to the internal organs more quickly and induced a more rapid systemic immune response in the host that may have offered some protection. Contrary to this, HVI initially progressed more slowly in the gills resulting in a slower generalised infection. However HVI ultimately reached a higher viral load and induced a greater mortality.


Assuntos
Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Isavirus/fisiologia , Isavirus/patogenicidade , Infecções por Orthomyxoviridae/veterinária , Salmo salar , Animais , Doenças dos Peixes/mortalidade , Proteínas de Peixes/metabolismo , Imuno-Histoquímica/veterinária , Isavirus/imunologia , Modelos Teóricos , Dados de Sequência Molecular , Especificidade de Órgãos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Análise de Sequência de DNA/veterinária , Carga Viral/veterinária , Virulência , Replicação Viral/fisiologia
12.
ISME J ; 8(4): 746-56, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24173459

RESUMO

Renibacterium salmoninarum is the causative agent of bacterial kidney disease, a major pathogen of salmonid fish species worldwide. Very low levels of intra-species genetic diversity have hampered efforts to understand the transmission dynamics and recent evolutionary history of this Gram-positive bacterium. We exploited recent advances in the next-generation sequencing technology to generate genome-wide single-nucleotide polymorphism (SNP) data from 68 diverse R. salmoninarum isolates representing broad geographical and temporal ranges and different host species. Phylogenetic analysis robustly delineated two lineages (lineage 1 and lineage 2); futhermore, dating analysis estimated that the time to the most recent ancestor of all the isolates is 1239 years ago (95% credible interval (CI) 444-2720 years ago). Our data reveal the intercontinental spread of lineage 1 over the last century, concurrent with anthropogenic movement of live fish, feed and ova for aquaculture purposes and stocking of recreational fisheries, whilst lineage 2 appears to have been endemic in wild Eastern Atlantic salmonid stocks before commercial activity. The high resolution of the SNP-based analyses allowed us to separate closely related isolates linked to neighboring fish farms, indicating that they formed part of single outbreaks. We were able to demonstrate that the main lineage 1 subgroup of R. salmoninarum isolated from Norway and the UK likely represent an introduction to these areas ~40 years ago. This study demonstrates the promise of this technology for analysis of micro and medium scale evolutionary relationships in veterinary and environmental microorganisms, as well as human pathogens.


Assuntos
Infecções por Actinomycetales/microbiologia , Doenças dos Peixes/microbiologia , Micrococcaceae/classificação , Micrococcaceae/genética , Filogenia , Salmonidae/microbiologia , Salmonidae/fisiologia , Animais , DNA Bacteriano/genética , Micrococcaceae/isolamento & purificação , Noruega , Polimorfismo de Nucleotídeo Único/genética , Dinâmica Populacional , Tempo
13.
BMC Microbiol ; 13: 285, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24313994

RESUMO

BACKGROUND: Bacterial kidney disease (BKD), caused by Renibacterium salmoninarum, is a bacterial disease of fish, which is both geographically widespread and difficult to control. Previously, application of various molecular typing methods has failed to reliably discriminate between R. salmoninarum isolates originating from different host species and geographic areas. The current study aimed to utilize multilocus variable number tandem repeats (VNTR) to investigate inter-strain variation of R. salmoninarum to establish whether host-specific populations exist in Atlantic salmon and rainbow trout respectively. Such information would be valuable in risk assessment of transmission of R. salmoninarum in a multispecies aquaculture environment. RESULTS: The present analysis utilizing sixteen VNTRs distinguished 17 different haplotypes amongst 41 R. salmoninarum isolates originating from Atlantic salmon and rainbow trout in Scotland, Norway and the US. The VNTR typing system revealed two well supported groups of R. salmoninarum haplotypes. The first group included R. salmoninarum isolates originating from both Atlantic salmon and rainbow trout circulating in Scottish and Norwegian aquaculture, in addition to the type strain ATCC33209T originating from Chinook salmon in North America. The second group comprised isolates found exclusively in Atlantic salmon, of mainly wild origin, including isolates NCIB1114 and NCIB1116 associated with the original Dee disease in Scotland. CONCLUSIONS: The present study confirmed that VNTR analysis can be successfully applied to discriminate R. salmoninarum strains. There was no clear distinction between isolates originating from Atlantic salmon and rainbow trout as several haplotypes in group 1 clustered together R. salmoninarum isolates from both species. These findings indicate a potential exchange of pathogens between Atlantic salmon and rainbow trout in Scottish and Norwegian aquaculture during the last 20 years. In a scenario of expansion of rainbow trout farming into the marine environment, appropriate biosecurity measures to minimize disease occurrence are advised. The present results also suggest that R. salmoninarum isolates circulating in European aquaculture over the last 20 years are genetically distant to the wild strains originally causing BKD in the rivers Dee and Spey.


Assuntos
Doenças dos Peixes/microbiologia , Variação Genética , Nefropatias/veterinária , Micrococcaceae/classificação , Micrococcaceae/genética , Repetições Minissatélites , Tipagem Molecular/métodos , Salmonidae , Animais , Aquicultura , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Genótipo , Nefropatias/microbiologia , Micrococcaceae/isolamento & purificação , Epidemiologia Molecular , Dados de Sequência Molecular , Noruega , Escócia , Análise de Sequência de DNA , Estados Unidos
14.
Aquat Toxicol ; 142-143: 45-52, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23948077

RESUMO

Male European flounder (Platichthys flesus) were exposed to a technical mixture of brominated diphenyl ethers (PDBEs, DE-71, Pentamix) that had been purified to remove contaminating dioxins. Controls were exposed to carrier solvent alone. Fish were exposed to decadally increasing concentrations of Pentamix via both sediment and spiked food. The GENIPOL P. flesus cDNA microarray, differentially expressed gene profiling (DEG) and quantitative PCR were employed to detect hepatic transcriptional differences between exposed fish and controls. Gene transcriptional changes were more sensitive to Pentamix exposure than biomarkers measured previously. Pentamix exposure induced transcripts coding for enzymes of xenobiotic metabolism (CYP1A, aldo-keto reductases) and elicited endocrine disruption (vitellogenin and thyroid hormone receptor alpha), with effects on CYP1A and VTG occurring at the highest exposure. Ontology analysis clearly showed dose-responsive changes indicative of oxidative stress, induction of mitochondrial dysfunction, and apoptosis. We conclude that exposure to PBDEs in both sediment and food has a significant adverse effect on a broad range of crucial biochemical processes in the livers of this widely distributed estuarine fish species, the flounder.


Assuntos
Retardadores de Chama/toxicidade , Linguado/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Perfilação da Expressão Gênica , Masculino
15.
Arch Virol ; 158(10): 2143-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23595129

RESUMO

Salmon pancreas disease virus is an alphavirus (family Togaviridae) affecting mainly Atlantic salmon (Salmo salar L.). Both polyprotein sequences of the Scottish isolate (SAV4640) were determined and compared with those of Irish isolate SAVF93-125. High amino acid sequence similarity (99.4 %) was found. Six amino acid deletions were found in the E2 gene of SAV4640. SAVF93-125 demonstrated a high viral load in culture despite high Mx expression. Approximately 50 % of cells infected with SAVF93-125 exhibited a cytopathic effect by day 8. SAV4640 successfully entered the cells, inducing 10,500-fold higher Mx expression at day 2 compared to SAVF93-25; however, no replication was observed based on results of the nsP1 qRT-PCR.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Togaviridae/genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Efeito Citopatogênico Viral , Genes Virais , Dados de Sequência Molecular , Salmonidae , Proteínas Virais/genética , Replicação Viral
16.
J Virol Methods ; 187(2): 209-14, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23089575

RESUMO

Viral haemorrhagic septicaemia virus (VHSV) is the agent of a disease that causes mortality events in marine and freshwater fish. It is one of the most important pathogens in European rainbow trout (Oncorhynchus mykiss) aquaculture. Four major genotypes of the virus are recognised reflecting different geographic and host ranges. Genotyping of VHS isolates is important for disease management enabling monitoring of disease spread into new geographical regions or susceptible species. This study sought to develop molecular tools for rapid and efficient classification of European VHSV genotypes. Specificity of genotype-specific real-time reverse transcription polymerase chain reaction (RT-qPCR) assays targeting the viral nucleoprotein (N) gene was tested using 66 viral isolates. All designed Taqman(®) RT-qPCR assays were genotype specific, displayed a high sensitivity and together constituted a diagnostic method for the rapid discrimination of European VHSV genotypes. Practical diagnostic applications of such assays demonstrated in this study include: (1) rapid genotype determination of isolates; and (2) identification of mixed-genotype isolates originating from pooled samples in areas where genotype distribution is known to overlap. However, the most important application will be supporting international VHSV surveillance programmes through the provision of a rapid specific and sensitive isolate characterisation method.


Assuntos
Septicemia Hemorrágica Viral/diagnóstico , Septicemia Hemorrágica Viral/virologia , Novirhabdovirus/classificação , Novirhabdovirus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Medicina Veterinária/métodos , Virologia/métodos , Animais , Aquicultura , Europa (Continente) , Genótipo , Novirhabdovirus/genética , Oncorhynchus mykiss , Sensibilidade e Especificidade
17.
Parasitol Res ; 107(4): 909-14, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20668880

RESUMO

This study is focused on the feasibility of two treatments of alcohol-fixed monogenean parasites which are intended to be use for the combined morphological and molecular characterizations. The monogenean parasite, Eudiplozoon nipponicum, was selected as a model parasite species; however it is expected that these techniques will be suitable for other monogeneans and other parasitic families. The haptor of diplozoid parasites is equipped with sclerotized attachment clamps and central hooks which are utilized for morphological identification. As parasite tissue become very tough and rigid when preserved in ethanol, using these structures for species identification without additional treatment is difficult. We investigated two different techniques to digest the surrounding tissues, the first was treatment with 10% sodium dodecyl sulphate (SDS) and the second treatment was proteinase K. Tissue was successfully digested in both treatments and all clamps, central hook and even individual sclerites of the clamps were clearly visible and well defined. After treatment, the digest was used to extract genomic DNA, and the second internal transcribed spacer of the ribosomal DNA genes (rDNA) was amplified. Nucleic acid sequence was obtained from 90% of parasite specimens processed by both treatments. Treatment of haptors with SDS was proven to be more successful with no visible changes or damage observed to sclerites even after a month. This method represents a useful tool for the combined morphological and molecular studies as the correct sequence can be assigned to the same individual worm from which haptoral parts have been obtained.


Assuntos
Etanol/farmacologia , Fixadores/farmacologia , Parasitologia/métodos , Platelmintos/isolamento & purificação , Preservação Biológica/métodos , Animais , DNA de Helmintos/genética , DNA de Helmintos/isolamento & purificação , Endopeptidase K/metabolismo , Platelmintos/anatomia & histologia , Platelmintos/genética , Dodecilsulfato de Sódio/metabolismo , Manejo de Espécimes/métodos
18.
Parasitol Res ; 106(1): 1-6, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19838735

RESUMO

The first record of Gyrodactylus species Nordmann, 1832 on the cichlid fish from Senegal is reported. Gyrodactylus parasites were found on four host species studied, Hemichromis fasciatus, Hemichromis letournaeuxi, Oreochromis niloticus, and Sarotherodon galilaeus. Gyrodactylus cichlidarum Paperna (Bamidgeh 13:14-29, 1968) were collected from H. fasciatus, and its identity was confirmed based on the morphometrical comparison with the holotype specimens of G. cichlidarum. Only one specimen of Gyrodactylus sp. was noted on H. letournaeuxi. The gyrodactylid specimens on O. niloticus and S. galilaeus were described as Gyrodactylus ergensi n. sp. based on the detailed morphometrical analysis supported by sequencing. The haptoral sclerites of G. ergensi n. sp., which closely resemble those of Gyrodactylus nyanzae Paperna, 1973, are compared with the type material and discussed. A partial sequence of the internal transcribed spacer recombinant DNA (ITS rDNA) was obtained from two specimens of G. ergensi, and a close relationship between G. ergensi n. sp. and G. cichlidarum is suggested based on 92% similarity in ITS rDNA region.


Assuntos
Ciclídeos/parasitologia , Platelmintos/classificação , Platelmintos/isolamento & purificação , Animais , DNA de Helmintos/química , DNA de Helmintos/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Filogenia , Platelmintos/anatomia & histologia , Senegal , Análise de Sequência de DNA
19.
J Parasitol ; 95(3): 555-60, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19642801

RESUMO

Diplogyrodactylus martini n. g. et sp., a viviparous monogenean, is described from the gills of gray bichir Polypterus senegalus Cuvier, 1829, in Senegal. This new genus can be readily distinguished from the other described viviparous genera based on the morphology of the attachment apparatus. The haptor is equipped with a pair of centrally positioned hamuli, a simple ventral bar without membrane and 8 pairs of marginal hooks of 2 types, 5 pairs of hooks with well-defined large falculate sickles, and 3 pairs of smaller hooks with well-articulated sickles. The new genus is unique in having a teardrop-shaped muscular tubular male copulatory organ which lacks spines. A partial sequence of the internal transcribed spacer (ITS rDNA) was obtained from 4 specimens of D. martini. The relationship among D. martini and other genera of the Gyrodactylidae is discussed based on the similarities of the attachment apparatus.


Assuntos
Doenças dos Peixes/parasitologia , Brânquias/parasitologia , Trematódeos/classificação , Infecções por Trematódeos/veterinária , Animais , Sequência de Bases , Sequência Consenso , DNA de Helmintos/química , DNA Espaçador Ribossômico/química , Peixes , Microscopia de Interferência , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Senegal , Trematódeos/anatomia & histologia , Trematódeos/genética , Infecções por Trematódeos/parasitologia
20.
Dis Aquat Organ ; 80(2): 137-44, 2008 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-18717066

RESUMO

A survey was undertaken to determine the potential distribution of viral haemorrhagic septicaemia virus (VHSV) in marine cage-based salmonid farms in Scotland. A rapid, accurate and sensitive quantitative real-time RT-PCR (qRT-PCR) assay was developed, targeting a conserved region of the nucleoprotein (N) gene of the virus. The qRT-PCR assay was shown to be more sensitive than the conventional VHSV RT-PCR. A validation protocol included several different virus isolates as the target and confirmed that the assay could detect all European VHSV genotypes (I, II and III). Both endogenous and exogenous controls were designed to control for integrity of template and distinguish between true VHSV positives and contamination with the positive control material. In total, the universal European VHSV qRT-PCR assay with exogenous positive control was applied to screen 2040 individual Atlantic salmon Salmo salar and 150 individual rainbow trout Oncorhynchus mykiss. No evidence of the presence of VHSV in association with either salmonid species in Scottish marine farms was detected. However, both marine Atlantic salmon and rainbow trout are still considered possible carriers of VHSV, which remains a potential threat to freshwater farming. Therefore, a continued surveillance of these species in marine environment is recommended.


Assuntos
Pesqueiros , Septicemia Hemorrágica Viral/diagnóstico , Novirhabdovirus/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salmonidae/virologia , Animais , Sequência de Bases , Genótipo , Biologia Marinha , Dados de Sequência Molecular , Novirhabdovirus/genética , Nucleoproteínas/química , Nucleoproteínas/genética , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...