Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Exp Dent ; 8(2): e113-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27034748

RESUMO

BACKGROUND: For implant-supported hybrid prostheses, high mastication forces and reduced acrylic resin thickness over a metal substructure often cause failures arising from tooth or resin fractures. To assay fracture resistance of artificial teeth and resin in implant-supported hybrid prostheses in relation to the titanium structure and retention design supporting teeth. MATERIAL AND METHODS: 40 specimens bearing incisors were divided into four groups according to the titanium structure supporting the teeth and the type of load force applied: Group I (Control; n=10): Application of static loading to ten incisors set over a metal structure with internal retention. Group II (Control; n=10): Application of static loading to ten incisors set over a metal structure with external retention. The remaining study specimens (n=20) were subjected to 120,000 masticatory and thermal cycles in a chewing simulator. Afterwards, static loading was applied until the point of fracture using an Instron machine. Group III (Study; n=10): Application of dynamic and static loading to ten incisors set over a metal structure with internal retention. Group IV (Study; n=10): Application of dynamic and static loading to ten incisors set over a metal structure with external retention. Data obtained for the four groups was analyzed and compared, determining the type of fracture (cohesive or adhesive) using a reflected light microscope. RESULTS: Statistical analysis confirmed that there were significant differences in fracture resistance between the four groups. External retention was found to have more fracture resistance than the internal retention. CONCLUSIONS: Hybrid prostheses with titanium substructures and external retention obtained significantly better results than samples with internal retention. KEY WORDS: Chewing simulator, thermocycler, fatigue, implant-supported hybrid prosthesis, acrylic teeth, fracture, metal structure design.

2.
J Clin Exp Dent ; 7(1): e80-3, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25810848

RESUMO

The purpose of the present study is to evaluate the fracture load of composite-based repairs to fractured zirconium oxide (Z) crowns and to ceramic-fused-to-metal (CM) crowns, comparing different mechanical surface preparation methods. A total of 75 crowns were repaired; samples then underwent dynamic loading and thermocycling. Final fracture load values for failure of the repaired crowns were measured and the type of fracture registered. Group I: CM: Surface preparation with a diamond bur + 9.5% Hydrofluoric Acid (HF) etching; Group II): CM: air-particle (Al2O3) + 9.5% HF; Group III: CM: Silica coating (SiO2); Group IV): Z: air-particle (Al2O3) + HF 9.5%; Group V) Z: Silica coating (SiO2). Of the three CM groups, Group I (CM-diamond bur) showed the highest mean failure value, with significant difference in comparison with Group III (CM-silica coating). For the zirconia groups, the highest value was obtained by Group V (silica coating). Key words:Crown, ceramic-fused-to-metal, zirconia, resin-composite, ceramic covering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA