Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cardiovasc Res ; 2: 144-158, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36949957

RESUMO

Somatic mutations in blood indicative of clonal hematopoiesis of indeterminate potential (CHIP) are associated with an increased risk of hematologic malignancy, coronary artery disease, and all-cause mortality. Here we analyze the relation between CHIP status and incident peripheral artery disease (PAD) and atherosclerosis, using whole-exome sequencing and clinical data from the UK Biobank and Mass General Brigham Biobank. CHIP associated with incident PAD and atherosclerotic disease across multiple beds, with increased risk among individuals with CHIP driven by mutation in DNA Damage Repair (DDR) genes such as TP53 and PPM1D. To model the effects of DDR-induced CHIP on atherosclerosis, we used a competitive bone marrow transplantation strategy, and generated atherosclerosis-prone Ldlr-/- chimeric mice carrying 20% p53-deficient hematopoietic cells. The chimeric mice were analyzed 13-weeks post-grafting and showed increased aortic plaque size and accumulation of macrophages within the plaque, driven by increased proliferation of p53-deficient plaque macrophages. In summary, our findings highlight the role of CHIP as a broad driver of atherosclerosis across the entire arterial system beyond the coronary arteries, and provide genetic and experimental support for a direct causal contribution of TP53-mutant CHIP to atherosclerosis.

2.
J Gastrointest Surg ; 26(2): 286-297, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34882294

RESUMO

BACKGROUND: The peroxisome proliferator-activated receptor (PPAR)-γ plays a key role in adipose tissue differentiation and fat metabolism. However, it is unclear which factors may regulate its expression and whether obese patients have changes in adipose tissue expression of PPAR-γor potential regulators such as miR-27. Thus, our aims were to analyze PPAR-γ and miR-27 expression in adipose tissue of obese patients, and to correlate their levels with clinical variables. SUBJECTS AND METHODS: We included 43 morbidly obese subjects who underwent sleeve gastrectomy (31 of them completed 1-year follow-up) and 19 non-obese subjects. mRNA expression of PPAR-γ1 and PPAR-γ2, miR-27a, and miR-27b was measured by qPCR in visceral and subcutaneous adipose tissue. Clinical variables and serum adipokine and hormone levels were correlated with PPAR-γ and miR-27 expression. In addition, a systematic review of the literature regarding PPAR-γ expression in adipose tissue of obese patients was performed. RESULTS: We found no differences in the expression of PPAR-γ and miR-27 in adipose tissue of obese patients vs. controls. The literature review revealed discrepant results regarding PPAR-γ expression in adipose tissue of obese patients. Of note, we described a significant negative correlation between pre-operative PPAR-γ1 expression in adipose tissue of obese patients and post-operative weight loss, potentially linked with insulin resistance markers. CONCLUSION: PPAR-γ1 expression in adipose tissue is associated with weight loss after sleeve gastrectomy and may be used as a biomarker for response to surgery.


Assuntos
Tecido Adiposo , Obesidade Mórbida , Receptores Ativados por Proliferador de Peroxissomo , Redução de Peso , Tecido Adiposo/metabolismo , Gastrectomia , Expressão Gênica , Humanos , MicroRNAs , Obesidade Mórbida/genética , Obesidade Mórbida/cirurgia , PPAR gama , Receptores Ativados por Proliferador de Peroxissomo/metabolismo
3.
Elife ; 92020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33287957

RESUMO

Liver metabolism follows diurnal fluctuations through the modulation of molecular clock genes. Disruption of this molecular clock can result in metabolic disease but its potential regulation by immune cells remains unexplored. Here, we demonstrated that in steady state, neutrophils infiltrated the mouse liver following a circadian pattern and regulated hepatocyte clock-genes by neutrophil elastase (NE) secretion. NE signals through c-Jun NH2-terminal kinase (JNK) inhibiting fibroblast growth factor 21 (FGF21) and activating Bmal1 expression in the hepatocyte. Interestingly, mice with neutropenia, defective neutrophil infiltration or lacking elastase were protected against steatosis correlating with lower JNK activation, reduced Bmal1 and increased FGF21 expression, together with decreased lipogenesis in the liver. Lastly, using a cohort of human samples we found a direct correlation between JNK activation, NE levels and Bmal1 expression in the liver. This study demonstrates that neutrophils contribute to the maintenance of daily hepatic homeostasis through the regulation of the NE/JNK/Bmal1 axis.


Every day, the body's biological processes work to an internal clock known as the circadian rhythm. This rhythm is controlled by 'clock genes' that are switched on or off by daily physical and environmental cues, such as changes in light levels. These daily rhythms are very finely tuned, and disturbances can lead to serious health problems, such as diabetes or high blood pressure. The ability of the body to cycle through the circadian rhythm each day is heavily influenced by the clock of one key organ: the liver. This organ plays a critical role in converting food and drink into energy. There is evidence that neutrophils ­ white blood cells that protect the body by being the first response to inflammation ­ can influence how the liver performs its role in obese people, by for example, releasing a protein called elastase. Additionally, the levels of neutrophils circulating in the blood change following a daily pattern. Crespo, González-Terán et al. wondered whether neutrophils enter the liver at specific times of the day to control liver's daily rhythm. Crespo, González-Terán et al. revealed that neutrophils visit the liver in a pattern that peaks when it gets light and dips when it gets dark by counting the number of neutrophils in the livers of mice at different times of the day. During these visits, neutrophils secreted elastase, which activated a protein called JNK in the cells of the mice's liver. This subsequently blocked the activity of another protein, FGF21, which led to the activation of the genes that allow cells to make fat molecules for storage. JNK activation also switched on the clock gene, Bmal1, ultimately causing fat to build up in the mice's liver. Crespo, González-Terán et al. also found that, in samples from human livers, the levels of elastase, the activity of JNK, and whether the Bmal1 gene was switched on were tightly linked. This suggests that neutrophils may be controlling the liver's rhythm in humans the same way they do in mice. Overall, this research shows that neutrophils can control and reset the liver's daily rhythm using a precisely co-ordinated series of molecular changes. These insights into the liver's molecular clock suggest that elastase, JNK and BmaI1 may represent new therapeutic targets for drugs or smart medicines to treat metabolic diseases such as diabetes or high blood pressure.


Assuntos
Proteínas CLOCK/metabolismo , Regulação da Expressão Gênica/fisiologia , Hepatócitos/metabolismo , Neutrófilos/fisiologia , Animais , Proteínas CLOCK/genética , Células Cultivadas , Ritmo Circadiano , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Inflamação/metabolismo , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Transgênicos , Neutropenia
4.
Cell Rep ; 33(4): 108326, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33113366

RESUMO

Human aging is frequently accompanied by the acquisition of somatic mutations in the hematopoietic system that induce clonal hematopoiesis, leading to the development of a mutant clone of hematopoietic progenitors and leukocytes. This somatic-mutation-driven clonal hematopoiesis has been associated with an increased incidence of cardiovascular disease and type 2 diabetes, but whether this epidemiological association reflects a direct, causal contribution of mutant hematopoietic and immune cells to age-related metabolic abnormalities remains unexplored. Here, we show that inactivating mutations in the epigenetic regulator TET2, which lead to clonal hematopoiesis, aggravate age- and obesity-related insulin resistance in mice. This metabolic dysfunction is paralleled by increased expression of the pro-inflammatory cytokine IL-1ß in white adipose tissue, and it is suppressed by pharmacological inhibition of NLRP3 inflammasome-mediated IL-1ß production. These findings support a causal contribution of somatic TET2 mutations to insulin resistance and type 2 diabetes.


Assuntos
Hematopoiese Clonal/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Resistência à Insulina/genética , Obesidade/genética , Envelhecimento , Animais , Humanos , Camundongos
5.
Front Endocrinol (Lausanne) ; 11: 572089, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424765

RESUMO

The complex functions of adipose tissue have been a focus of research interest over the past twenty years. Adipose tissue is not only the main energy storage depot, but also one of the largest endocrine organs in the body and carries out crucial metabolic functions. Moreover, brown and beige adipose depots are major sites of energy expenditure through the activation of adaptive, non-shivering thermogenesis. In recent years, numerous signaling molecules and pathways have emerged as critical regulators of adipose tissue, in both homeostasis and obesity-related disease. Among the best characterized are members of the p38 kinase family. The activity of these kinases has emerged as a key contributor to the biology of the white and brown adipose tissues, and their modulation could provide new therapeutic approaches against obesity. Here, we give an overview of the roles of the distinct p38 family members in adipose tissue, focusing on their actions in adipogenesis, thermogenic activity, and secretory function.


Assuntos
Tecido Adiposo/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Adipogenia , Animais , Plasticidade Celular , Transdiferenciação Celular , Humanos , Inflamação/etiologia , Termogênese
6.
Nature ; 568(7753): 557-560, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971822

RESUMO

The cell cycle is a tightly regulated process that is controlled by the conserved cyclin-dependent kinase (CDK)-cyclin protein complex1. However, control of the G0-to-G1 transition is not completely understood. Here we demonstrate that p38 MAPK gamma (p38γ) acts as a CDK-like kinase and thus cooperates with CDKs, regulating entry into the cell cycle. p38γ shares high sequence homology, inhibition sensitivity and substrate specificity with CDK family members. In mouse hepatocytes, p38γ induces proliferation after partial hepatectomy by promoting the phosphorylation of retinoblastoma tumour suppressor protein at known CDK target residues. Lack of p38γ or treatment with the p38γ inhibitor pirfenidone protects against the chemically induced formation of liver tumours. Furthermore, biopsies of human hepatocellular carcinoma show high expression of p38γ, suggesting that p38γ could be a therapeutic target in the treatment of this disease.


Assuntos
Carcinogênese/patologia , Ciclo Celular , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Fígado/enzimologia , Fígado/patologia , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Idoso , Animais , Carcinogênese/efeitos dos fármacos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Feminino , Hepatócitos/citologia , Hepatócitos/patologia , Humanos , Fígado/cirurgia , Neoplasias Hepáticas/induzido quimicamente , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína Quinase 12 Ativada por Mitógeno/antagonistas & inibidores , Fosforilação , Piridonas/farmacologia , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo , Homologia de Sequência , Especificidade por Substrato
7.
EMBO J ; 37(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389661

RESUMO

Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others activates G protein-coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector, which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown. Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP-activated protein kinase (AMPK)-dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet-induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the ß3-adrenergic receptor (ADRB3) in a CCAAT/enhancer binding protein (C/EBP)-α- and δ-dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis. Thus, depletion of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications.


Assuntos
Adipócitos/metabolismo , Adiposidade , Metabolismo Energético , Fígado Gorduroso/metabolismo , Obesidade/metabolismo , Proteína Quinase C/metabolismo , Gordura Subcutânea/metabolismo , Células 3T3-L1 , Adipócitos/patologia , Animais , Proteína delta de Ligação ao Facilitador CCAAT/genética , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Mutantes , Obesidade/genética , Obesidade/patologia , Proteína Quinase C/genética , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo , Sistemas do Segundo Mensageiro/genética , Gordura Subcutânea/fisiologia
8.
PLoS Biol ; 16(7): e2004455, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29979672

RESUMO

Adipose tissue has emerged as an important regulator of whole-body metabolism, and its capacity to dissipate energy in the form of heat has acquired a special relevance in recent years as potential treatment for obesity. In this context, the p38MAPK pathway has arisen as a key player in the thermogenic program because it is required for the activation of brown adipose tissue (BAT) thermogenesis and participates also in the transformation of white adipose tissue (WAT) into BAT-like depot called beige/brite tissue. Here, using mice that are deficient in p38α specifically in adipose tissue (p38αFab-KO), we unexpectedly found that lack of p38α protected against high-fat diet (HFD)-induced obesity. We also showed that p38αFab-KO mice presented higher energy expenditure due to increased BAT thermogenesis. Mechanistically, we found that lack of p38α resulted in the activation of the related protein kinase family member p38δ. Our results showed that p38δ is activated in BAT by cold exposure, and lack of this kinase specifically in adipose tissue (p38δ Fab-KO) resulted in overweight together with reduced energy expenditure and lower body and skin surface temperature in the BAT region. These observations indicate that p38α probably blocks BAT thermogenesis through p38δ inhibition. Consistent with the results obtained in animals, p38α was reduced in visceral and subcutaneous adipose tissue of subjects with obesity and was inversely correlated with body mass index (BMI). Altogether, we have elucidated a mechanism implicated in physiological BAT activation that has potential clinical implications for the treatment of obesity and related diseases such as diabetes.


Assuntos
Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Marrom/fisiologia , Proteína Quinase 13 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Termogênese , Adipócitos Marrons/enzimologia , Adulto , Animais , Índice de Massa Corporal , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/prevenção & controle , Dieta , Metabolismo Energético , Ativação Enzimática , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Obesidade/enzimologia , Obesidade/prevenção & controle , Proteína Desacopladora 1/metabolismo
9.
Nat Commun ; 8(1): 856, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021624

RESUMO

Increasing the thermogenic capacity of adipose tissue to enhance organismal energy expenditure is considered a promising therapeutic strategy to combat obesity. Here, we report that expression of the p38 MAPK activator MKK6 is elevated in white adipose tissue of obese individuals. Using knockout animals and shRNA, we show that Mkk6 deletion increases energy expenditure and thermogenic capacity of white adipose tissue, protecting mice against diet-induced obesity and the development of diabetes. Deletion of Mkk6 increases T3-stimulated UCP1 expression in adipocytes, thereby increasing their thermogenic capacity. Mechanistically, we demonstrate that, in white adipose tissue, p38 is activated by an alternative pathway involving AMPK, TAK, and TAB. Our results identify MKK6 in adipocytes as a potential therapeutic target to reduce obesity.Brown and beige adipose tissues dissipate heat via uncoupling protein 1 (UCP1). Here the authors show that the stress activated kinase MKK6 acts as a repressor of UCP1 expression, suggesting that its inhibition promotes adipose tissue browning and increases organismal energy expenditure.


Assuntos
Tecido Adiposo Branco/enzimologia , MAP Quinase Quinase 6/metabolismo , Obesidade/enzimologia , Proteína Desacopladora 1/metabolismo , Adipócitos Brancos/metabolismo , Adulto , Idoso , Animais , Estudos de Casos e Controles , Diabetes Mellitus/etiologia , Dieta Hiperlipídica , Metabolismo Energético , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Síndrome Metabólica/etiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/etiologia , Tri-Iodotironina/fisiologia , Núcleo Hipotalâmico Ventromedial/metabolismo
11.
Nat Commun ; 8: 15111, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28480888

RESUMO

p53 family members control several metabolic and cellular functions. The p53 ortholog p63 modulates cellular adaptations to stress and has a major role in cell maintenance and proliferation. Here we show that p63 regulates hepatic lipid metabolism. Mice with liver-specific p53 deletion develop steatosis and show increased levels of p63. Down-regulation of p63 attenuates liver steatosis in p53 knockout mice and in diet-induced obese mice, whereas the activation of p63 induces lipid accumulation. Hepatic overexpression of N-terminal transactivation domain TAp63 induces liver steatosis through IKKß activation and the induction of ER stress, the inhibition of which rescues the liver functions. Expression of TAp63, IKKß and XBP1s is also increased in livers of obese patients with NAFLD. In cultured human hepatocytes, TAp63 inhibition protects against oleic acid-induced lipid accumulation, whereas TAp63 overexpression promotes lipid storage, an effect reversible by IKKß silencing. Our findings indicate an unexpected role of the p63/IKKß/ER stress pathway in lipid metabolism and liver disease.


Assuntos
Estresse do Retículo Endoplasmático , Fígado Gorduroso/metabolismo , Quinase I-kappa B/metabolismo , Fígado/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adulto , Animais , Fígado Gorduroso/genética , Fígado Gorduroso/fisiopatologia , Feminino , Hepatócitos/metabolismo , Humanos , Quinase I-kappa B/genética , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
12.
EMBO J ; 35(5): 536-52, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26843485

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a major health problem and the main cause of liver disease in Western countries. Although NAFLD is strongly associated with obesity and insulin resistance, its pathogenesis remains poorly understood. The disease begins with an excessive accumulation of triglycerides in the liver, which stimulates an inflammatory response. Alternative p38 mitogen-activated kinases (p38γ and p38δ) have been shown to contribute to inflammation in different diseases. Here we demonstrate that p38δ is elevated in livers of obese patients with NAFLD and that mice lacking p38γ/δ in myeloid cells are resistant to diet-induced fatty liver, hepatic triglyceride accumulation and glucose intolerance. This protective effect is due to defective migration of p38γ/δ-deficient neutrophils to the damaged liver. We further show that neutrophil infiltration in wild-type mice contributes to steatosis development by means of inflammation and liver metabolic changes. Therefore, p38γ and p38δ in myeloid cells provide a potential target for NAFLD therapy.


Assuntos
Fígado/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Infiltração de Neutrófilos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Adulto , Idoso , Animais , Feminino , Intolerância à Glucose , Humanos , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteína Quinase 12 Ativada por Mitógeno/imunologia , Proteína Quinase 13 Ativada por Mitógeno/genética , Proteína Quinase 13 Ativada por Mitógeno/imunologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Obesidade/imunologia , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo
13.
Am J Pathol ; 185(6): 1769-82, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25913075

RESUMO

Retinopathy of prematurity is a sight-threatening complication of premature birth caused by nitro-oxidative insult to the developing retinal vasculature during therapeutic hyperoxia exposure and later ischemia-induced neovascularization on supplemental oxygen withdrawal. In the vasodegenerative phase, during hyperoxia, defective endothelial nitric oxide synthase (NOS) produces reactive oxygen and nitrogen free radicals rather than vasoprotective nitric oxide for unclear reasons. Crucially, normal NOS function depends on availability of the cofactor (6R)-5,6,7,8-tetrahydrobiopterin (BH4). Because BH4 synthesis is controlled enzymatically by GTP cyclohydrolase (GTPCH), we used GTPCH-depleted mice [hyperphenylalaninemia strain (hph1)] to investigate the impact of hyperoxia on BH4 bioavailability and retinal vascular pathology in the neonate. Hyperoxia decreased BH4 in retinas, lungs, and aortas in all experimental groups, resulting in a dose-dependent decrease in NOS activity and, in the wild-type group, elevated NOS-derived superoxide. Retinal dopamine levels were similarly diminished, consistent with the dependence of tyrosine hydroxylase on BH4. Despite greater depletion of BH4, the hph(+/-) and hph1(-/-) groups did not show exacerbated hyperoxia-induced vessel closure, but exhibited greater vascular protection and reduced progression to neovascular disease. This vasoprotective effect was independent of enhanced circulating vascular endothelial growth factor (VEGF), which was reduced by hyperoxia, but to local retinal ganglion cell layer-derived VEGF. In conclusion, a constitutively higher level of VEGF expression associated with retinal development protects GTPCH-deficient neonates from oxygen-induced vascular damage.


Assuntos
Biopterinas/análogos & derivados , Hiperóxia/metabolismo , Óxido Nítrico Sintase/metabolismo , Retina/metabolismo , Retinopatia da Prematuridade/metabolismo , Animais , Biopterinas/metabolismo , Feminino , Hiperóxia/patologia , Masculino , Camundongos , Retina/patologia , Retinopatia da Prematuridade/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
J Clin Invest ; 123(1): 164-78, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23202732

RESUMO

Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Fator 2 de Elongação de Peptídeos/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 6/genética , MAP Quinase Quinase 6/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Proteína Quinase 13 Ativada por Mitógeno/genética , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Elongação Traducional da Cadeia Peptídica/genética , Fator 2 de Elongação de Peptídeos/genética , Fator de Necrose Tumoral alfa/genética
15.
J Nutr Biochem ; 23(6): 685-90, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21840193

RESUMO

The effects of polyunsaturated n-6 linoleic acid on monocyte-endothelial interactions were investigated with particular emphasis on the expression of platelet/endothelial cell adhesion molecule (PECAM)-1 and the role of protein kinase C (PKC) and cyclooxygenase-2 (COX-2). As a diet rich in polyunsaturated fatty acids may favour atherosclerosis in hyperglycaemia, this study was performed in both normal and high-glucose media using human aortic endothelial cells (HAEC). The HAEC were preincubated with normal (5 mM) or high (25 mM) D-glucose for 3 days before addition of fatty acids (0.2 mM) for 3 days. Linoleic acid enhanced PECAM-1 expression independently of tumor necrosis factor (TNF)-α and significantly increased TNF-α-induced monocyte adhesion to HAEC in comparison to the monounsaturated n-9 oleic acid. Chronic glucose treatment (25 mM, 6 days) did not modify the TNF-α-induced or fatty acid-induced changes in monocyte binding. The increase in monocyte binding was accompanied by a significant increase in E-selectin and vascular cell adhesion molecule (VCAM)-1 expression and could be abrogated by an interleukin (IL)-8 neutralising antibody and by the PKC and COX inhibitors. Inhibition of PKC-δ reduced VCAM-1 expression regardless of experimental condition and was accompanied by a significant decrease in monocyte binding. Conditioned medium from linoleic acid-treated HAEC grown in normal glucose conditions significantly increased THP-1 chemotaxis. These results suggest that linoleic acid-induced changes in monocyte chemotaxis and subsequent binding are not solely mediated by changes in adhesion molecule expression but may be due to secreted factors such as IL-8, monocyte chemoattractant protein-1 or prostaglandins (PGs) such as PGE(2), as IL-8 neutralisation and COX-2 inhibition reduced monocyte binding without changes in adhesion molecule expression.


Assuntos
Moléculas de Adesão Celular/efeitos dos fármacos , Quimiotaxia de Leucócito/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Células Endoteliais/efeitos dos fármacos , Ácido Linoleico/farmacologia , Monócitos/efeitos dos fármacos , Proteína Quinase C/metabolismo , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Glicemia/análise , Células Cultivadas , Quimiocina CCL2/metabolismo , Ciclo-Oxigenase 2/metabolismo , Selectina E/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Interleucina-8/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
16.
Am J Nephrol ; 34(2): 104-14, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21701161

RESUMO

BACKGROUND: Apoptosis and inflammatory/oxidative stress have been associated with hyperglycemia in human peritoneal mesothelial cells (HPMCs) and other cell types. We and others have highlighted the role of early products of non-enzymatic protein glycation in inducing proinflammatory conditions and increasing apoptotic rates in HPMCs. Loss of HPMCs seems to be a hallmark of complications associated with peritoneal membrane dysfunction. The aim of this work is to elucidate the mechanisms by which Amadori adducts may act upon HPMC apoptosis. METHODS: HPMCs isolated from different patients were exposed to different Amadori adducts, i.e. highly glycated hemoglobin (10 nM) and glycated bovine serum albumin (250 µg/ml), to study cell death and several proapoptotic markers by different experimental approaches. RESULTS: Amadori adducts, but not their respective controls, impaired cell proliferation and cell viability by means of apoptosis in a time-dependent manner. They regulated the intrinsic mitochondrial cell death signaling pathway and modulated activation of caspases, Bax, iNOS, p53, NF-κB, and mitogen-activated protein kinases (p38 and JNK) through different reactive oxygen and nitrosative species. CONCLUSIONS: Our data strongly support the idea that long-term hyperglycemia could act as an inducer of apoptosis in HPMCs through Amadori adducts, involving different oxidative and nitrosative reactive species.


Assuntos
Apoptose , Epitélio/patologia , Glicolipídeos/farmacologia , Nitrogênio/metabolismo , Estresse Oxidativo , Fosfatidiletanolaminas/farmacologia , Animais , Bovinos , Morte Celular , Citocromos c/metabolismo , Humanos , Hiperglicemia/metabolismo , Inflamação , L-Lactato Desidrogenase/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais
17.
Invest Ophthalmol Vis Sci ; 51(12): 6815-25, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20702831

RESUMO

PURPOSE: Disturbances to the cellular production of nitric oxide (NO) and superoxide (O(2)(-)) can have deleterious effects on retinal vascular integrity and angiogenic signaling. Dietary agents that could modulate the production of these signaling molecules from their likely enzymatic sources, endothelial nitric oxide synthase (eNOS) and NADPH oxidase, would therefore have a major beneficial effect on retinal vascular disease. The effect of ω-3 polyunsaturated fatty acids (PUFAs) on angiogenic signaling and NO/superoxide production in retinal microvascular endothelial cells (RMECs) was investigated. METHODS: Primary RMECs were treated with docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) for 48 hours. RMEC migration was determined by scratch-wound assay, proliferation by the incorporation of BrdU, and angiogenic sprouting using a three-dimensional model of in vitro angiogenesis. NO production was quantified by Griess assay, and phospho-eNOS accumulation and superoxide were measured using the fluorescent probe dihydroethidine. eNOS localization to caveolin-rich microdomains was determined by Western blot analysis after subfractionation on a linear sucrose gradient. RESULTS: DHA treatment increased nitrite and decreased superoxide production, which correlated with the displacement of eNOS from caveolar subdomains and colocalization with the negative regulator caveolin-1. In addition, both ω-3 PUFAs demonstrated reduced responsiveness to VEGF-stimulated superoxide and nitrite release and significantly impaired endothelial wound healing, proliferation, and angiogenic sprout formation. CONCLUSIONS: DHA improves NO bioavailability, decreases O(2)(-) production, and blunts VEGF-mediated angiogenic signaling. These findings suggest a role for ω-3 PUFAs, particularly DHA, in maintaining vascular integrity while reducing pathologic retinal neovascularization.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Neovascularização Patológica/prevenção & controle , Óxido Nítrico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxidos/metabolismo , Fator A de Crescimento do Endotélio Vascular/toxicidade , Animais , Apoptose , Western Blotting , Bovinos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ácido Eicosapentaenoico/farmacologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Corantes Fluorescentes , Marcação In Situ das Extremidades Cortadas , Neovascularização Patológica/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Nitrosação , Oxirredução , Vasos Retinianos/citologia , Cicatrização/efeitos dos fármacos
18.
PLoS One ; 5(4): e10091, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20386708

RESUMO

BACKGROUND: Hyperglycemia is acknowledged as an independent risk factor for developing diabetes-associated atherosclerosis. At present, most therapeutic approaches are targeted at a tight glycemic control in diabetic patients, although this fails to prevent macrovascular complications of the disease. Indeed, it remains highly controversial whether or not the mere elevation of extracellular D-glucose can directly promote vascular inflammation, which favors early pro-atherosclerotic events. METHODS AND FINDINGS: In the present work, increasing extracellular D-glucose from 5.5 to 22 mmol/L was neither sufficient to induce intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression, analyzed by flow cytometry, nor to promote leukocyte adhesion to human umbilical vein endothelial cells (HUVEC) in vitro, measured by flow chamber assays. Interestingly, the elevation of D-glucose levels potentiated ICAM-1 and VCAM-1 expression and leukocyte adhesion induced by a pro-inflammatory stimulus, such as interleukin (IL)-1beta (5 ng/mL). In HUVEC, high D-glucose augmented the activation of extracellular signal-regulated kinase 1/2 (ERK 1/2) and nuclear transcription factor-kappaB (NF-kappaB) elicited by IL-1beta, measured by Western blot and electromobility shift assay (EMSA), respectively, but had no effect by itself. Both ERK 1/2 and NF-kappaB were necessary for VCAM-1 expression, but not for ICAM-1 expression. In vivo, leukocyte trafficking was evaluated in the rat mesenteric microcirculation by intravital microscopy. In accordance with the in vitro data, the acute intraperitoneal injection of D-glucose increased leukocyte rolling flux, adhesion and migration, but only when IL-1beta was co-administered. CONCLUSIONS: These results indicate that the elevation of extracellular D-glucose levels is not sufficient to promote vascular inflammation, and they highlight the pivotal role of a pro-inflammatory environment in diabetes, as a critical factor conditioning the early pro-atherosclerotic actions of hyperglycemia.


Assuntos
Endotélio Vascular/metabolismo , Glucose/metabolismo , Hiperglicemia/patologia , Inflamação/patologia , Microvasos/metabolismo , Adesividade , Animais , Adesão Celular , Quimiotaxia de Leucócito , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Endotélio Vascular/patologia , Glucose/efeitos adversos , Humanos , Inflamação/induzido quimicamente , Migração e Rolagem de Leucócitos , Ratos , Veias Umbilicais
19.
Invest Ophthalmol Vis Sci ; 51(6): 3291-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20107169

RESUMO

PURPOSE: Neovascularization occurs in response to tissue ischemia and growth factor stimulation. In ischemic retinopathies, however, new vessels fail to restore the hypoxic tissue; instead, they infiltrate the transparent vitreous. In a model of oxygen-induced retinopathy (OIR), TNFalpha and iNOS, upregulated in response to tissue ischemia, are cytotoxic and inhibit vascular repair. The aim of this study was to investigate the mechanism for this effect. METHODS: Wild-type C57/BL6 (WT) and TNFalpha(-/-) mice were subjected to OIR by exposure to 75% oxygen (postnatal days 7-12). The retinas were removed during the hypoxic phase of the model. Retinal cell death was determined by TUNEL staining, and the microglial cells were quantified after Z-series capture with a confocal microscope. In situ peroxynitrite and superoxide were measured by using the fluorescent dyes DCF and DHE. iNOS, nitrotyrosine, and arginase were analyzed by real-time PCR, Western blot analysis, and activity determined by radiolabeled arginine conversion. Astrocyte coverage was examined after GFAP immunostaining. RESULTS: The TNFalpha(-/-) animals displayed a significant reduction in TUNEL-positive apoptotic cells in the inner nuclear layer of the avascular retina compared with that in the WT control mice. The reduction coincided with enhanced astrocytic survival and an increase in microglial cells actively engaged in phagocytosing apoptotic debris that displayed low ROS, RNS, and NO production and high arginase activity. CONCLUSIONS: Collectively, the results suggest that improved vascular recovery in the absence of TNFalpha is associated with enhanced astrocyte survival and that both phenomena are dependent on preservation of microglial cells that display an anti-inflammatory phenotype during the early ischemic phase of OIR.


Assuntos
Isquemia/metabolismo , Microglia/citologia , Estresse Oxidativo , Doenças Retinianas/metabolismo , Neurônios Retinianos/patologia , Vasos Retinianos/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Animais , Apoptose , Arginase/metabolismo , Western Blotting , Contagem de Células , Morte Celular , Sobrevivência Celular , Marcação In Situ das Extremidades Cortadas , Isquemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Nitrosação , Oxigênio/toxicidade , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doenças Retinianas/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tirosina/análogos & derivados , Tirosina/metabolismo
20.
J Hypertens ; 26(3): 478-85, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18300858

RESUMO

OBJECTIVES: The present study investigated whether high concentrations of D-glucose can trigger pro-inflammatory mechanisms in human aortic smooth muscle cells. METHODS: The expression and/or the activity of inducible nitric oxide synthase (iNOS), the extracellular signal-regulated kinase (ERK) 1/2 and nuclear factor (NF)-kappaB were studied in cultured human aortic smooth muscle cells (HASMC) in response to increasing concentrations of D-glucose and/or the inflammatory cytokine interleukin (IL)-1beta. RESULTS: Increasing D-glucose in the medium from 5.5 to 22 mmol/l had no effect on any of these parameters. However, the high concentration of D-glucose did increase iNOS expression in response to low concentrations of IL-1beta (2.5 and 5 ng/ml), as well as the IL-1beta-induced activation of both ERK 1/2 and NF-kappaB. D-glucose also enhanced, concentration-dependently, the expression and activity of iNOS induced by co-incubation with IL-1beta (10 ng/ml). Pretreatment with IL-1beta sensitized the cells to the subsequent effects of high D-glucose. CONCLUSIONS: The results indicate that high concentrations of D-glucose exacerbate the pro-inflammatory effects of IL-1beta. We suggest that the observed association between inflammation and diabetes is the result of elevated D-glucose enhancing a pre-existing inflammatory condition, rather than a direct effect of D-glucose on the production of inflammatory mediators.


Assuntos
Glucose/farmacologia , Miócitos de Músculo Liso/metabolismo , NF-kappa B/biossíntese , Óxido Nítrico Sintase/biossíntese , Fosfotransferases/biossíntese , Aorta , Células Cultivadas , Expressão Gênica , Humanos , Interleucina-1beta/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/imunologia , Miócitos de Músculo Liso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...