Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 15(6): 773-786, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29558247

RESUMO

Deregulation of tRNAs, aminoacyl-tRNA synthetases and tRNA modifying enzymes are common in cancer, raising the hypothesis that protein synthesis efficiency and accuracy (mistranslation) are compromised in tumors. We show here that human colon tumors and xenograft tumors produced in mice by two epithelial cancer cell lines mistranslate 2- to 4-fold more frequently than normal tissue. To clarify if protein mistranslation plays a role in tumor biology, we expressed mutant Ser-tRNAs that misincorporate Ser-at-Ala (frequent error) and Ser-at-Leu (infrequent error) in NIH3T3 cells and investigated how they responded to the proteome instability generated by the amino acid misincorporations. There was high tolerance to both misreading tRNAs, but the Ser-to-Ala misreading tRNA was a more potent inducer of cell transformation, stimulated angiogenesis and produced faster growing tumors in mice than the Ser-to-Leu misincorporating tRNA. Upregulation of the Akt pathway and the UPR were also observed. Most surprisingly, the relative expression of both misreading tRNAs increased during tumor growth, suggesting that protein mistranslation is advantageous in cancer contexts. These data highlight new features of protein synthesis deregulation in tumor biology.


Assuntos
Carcinoma , Códon , Neoplasias do Colo , Proteínas de Neoplasias , Proteoma , RNA Neoplásico , RNA de Transferência , Animais , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Embrião de Galinha , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Camundongos , Células NIH 3T3 , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteoma/biossíntese , Proteoma/genética , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
2.
Sci Rep ; 5: 10079, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25974085

RESUMO

Mesenchymal Stem/Stromal Cells (MSC) are a promising cell type for cell-based therapies - from tissue regeneration to treatment of autoimmune diseases - due to their capacity to migrate to damaged tissues, to differentiate in different lineages and to their immunomodulatory and paracrine properties. Here, a simple and reliable imaging technique was developed to study MSC dynamical behavior in natural and bioengineered 3D matrices. Human MSC were transfected to express a fluorescent photoswitchable protein, Dendra2, which was used to highlight and follow the same group of cells for more than seven days, even if removed from the microscope to the incubator. This strategy provided reliable tracking in 3D microenvironments with different properties, including the hydrogels Matrigel and alginate as well as chitosan porous scaffolds. Comparison of cells mobility within matrices with tuned physicochemical properties revealed that MSC embedded in Matrigel migrated 64% more with 5.2 mg protein/mL than with 9.6 mg/mL and that MSC embedded in RGD-alginate migrated 51% faster with 1% polymer concentration than in 2% RGD-alginate. This platform thus provides a straightforward approach to characterize MSC dynamics in 3D and has applications in the field of stem cell biology and for the development of biomaterials for tissue regeneration.


Assuntos
Movimento Celular/fisiologia , Rastreamento de Células/métodos , Imageamento Tridimensional/métodos , Proteínas Luminescentes/genética , Células-Tronco Mesenquimais/citologia , Materiais Biocompatíveis , Bioengenharia , Biomarcadores , Células da Medula Óssea/citologia , Sobrevivência Celular , Células Cultivadas , Humanos , Transplante de Células-Tronco Mesenquimais , Alicerces Teciduais , Transfecção , Cicatrização/fisiologia
3.
Eur J Hum Genet ; 22(9): 1085-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24424122

RESUMO

Hereditary diffuse gastric cancer (HDGC) syndrome, although rare, is highly penetrant at an early age, and is severe and incurable because of ineffective screening tools and therapy. Approximately 45% of HDGC families carry germline CDH1/E-cadherin alterations, 20% of which are nonsense leading to premature protein truncation. Prophylactic gastrectomy is the only recommended approach for all asymptomatic CDH1 mutation carriers. Suppressor-tRNAs can replace premature stop codons (PTCs) with a cognate amino acid, inducing readthrough and generating full-length proteins. The use of suppressor-tRNAs in HDGC patients could therefore constitute a less invasive therapeutic option for nonsense mutation carriers, delaying the development of gastric cancer. Our analysis revealed that 23/108 (21.3%) of E-cadherin-mutant families carried nonsense mutations that could be potentially corrected by eight suppressor-tRNAs, and arginine was the most frequently affected amino acid. Using site-directed mutagenesis, we developed an arginine suppressor-tRNA vector to correct one HDGC nonsense mutation. E-cadherin- deficient cell lines were transfected with plasmids carrying simultaneously the suppressor-tRNA and wild-type or mutant CDH1 mini-genes. RT-PCR, western blot, immunofluorescence, flow cytometry and proximity ligation assay (PLA) were used to establish the model, and monitor mRNA and protein expression and function recovery from CDH1 vectors. Cells expressing a CDH1 mini-gene, carrying a nonsense mutation and the suppressor-tRNA, recovered full-length E-cadherin expression and its correct localization and incorporation into the adhesion complex. This is the first demonstration of functional recovery of a mutated causative gene in hereditary cancer by cognate amino acid replacement with suppressor-tRNAs. Of the HDGC families, 21.3% are candidates for correction with suppressor-tRNAs to potentially delay cancer onset.


Assuntos
Caderinas/genética , Códon sem Sentido , RNA de Transferência/genética , Neoplasias Gástricas/genética , Animais , Antígenos CD , Células CHO , Caderinas/metabolismo , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Heterozigoto , Humanos
4.
RNA Biol ; 10(6): 969-80, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23619021

RESUMO

Fungi of the CTG clade translate the Leu CUG codon as Ser. This genetic code alteration is the only eukaryotic sense-to-sense codon reassignment known to date, is mediated by an ambiguous serine tRNA (tRNACAG(Ser)), exposes unanticipated flexibility of the genetic code and raises major questions about its selection and fixation in this fungal lineage. In particular, the origin of the tRNACAG(Ser) and the evolutionary mechanism of CUG reassignment from Leu to Ser remain poorly understood. In this study, we have traced the origin of the tDNACAG(Ser) gene and studied critical mutations in the tRNACAG(Ser) anticodon-loop that modulated CUG reassignment. Our data show that the tRNACAG(Ser) emerged from insertion of an adenosine in the middle position of the 5'-CGA-3'anticodon of a tRNACGA(Ser) ancestor, producing the 5'-CAG-3' anticodon of the tRNACAG(Ser), without altering its aminoacylation properties. This mutation initiated CUG reassignment while two additional mutations in the anticodon-loop resolved a structural conflict produced by incorporation of the Leu 5'-CAG-3'anticodon in the anticodon-arm of a tRNA(Ser). Expression of the mutant tRNACAG(Ser) in yeast showed that it cannot be expressed at physiological levels and we postulate that such downregulation was essential to maintain Ser misincorporation at sub-lethal levels during the initial stages of CUG reassignment. We demonstrate here that such low level CUG ambiguity is advantageous in specific ecological niches and we propose that misreading tRNAs are targeted for degradation by an unidentified tRNA quality control pathway.


Assuntos
Fungos/genética , Código Genético , RNA de Transferência de Serina/genética , RNA de Transferência de Serina/metabolismo , Anticódon , Sequência de Bases , Evolução Molecular , Dados de Sequência Molecular , Mutação , Filogenia
5.
PLoS One ; 4(4): e5212, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19381334

RESUMO

Translation fidelity is critical for protein synthesis and to ensure correct cell functioning. Mutations in the protein synthesis machinery or environmental factors that increase synthesis of mistranslated proteins result in cell death and degeneration and are associated with neurodegenerative diseases, cancer and with an increasing number of mitochondrial disorders. Remarkably, mRNA mistranslation plays critical roles in the evolution of the genetic code, can be beneficial under stress conditions in yeast and in Escherichia coli and is an important source of peptides for MHC class I complex in dendritic cells. Despite this, its biology has been overlooked over the years due to technical difficulties in its detection and quantification. In order to shed new light on the biological relevance of mistranslation we have generated codon misreading in Saccharomyces cerevisiae using drugs and tRNA engineering methodologies. Surprisingly, such mistranslation up-regulated the longevity gene PNC1. Similar results were also obtained in cells grown in the presence of amino acid analogues that promote protein misfolding. The overall data showed that PNC1 is a biomarker of mRNA mistranslation and protein misfolding and that PNC1-GFP fusions can be used to monitor these two important biological phenomena in vivo in an easy manner, thus opening new avenues to understand their biological relevance.


Assuntos
Genes Fúngicos , Nicotinamidase/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Regulação para Cima , Longevidade/genética , Ressonância Magnética Nuclear Biomolecular
6.
PLoS One ; 2(10): e996, 2007 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17912373

RESUMO

BACKGROUND: The discovery of genetic code alterations and expansions in both prokaryotes and eukaryotes abolished the hypothesis of a frozen and universal genetic code and exposed unanticipated flexibility in codon and amino acid assignments. It is now clear that codon identity alterations involve sense and non-sense codons and can occur in organisms with complex genomes and proteomes. However, the biological functions, the molecular mechanisms of evolution and the diversity of genetic code alterations remain largely unknown. In various species of the genus Candida, the leucine CUG codon is decoded as serine by a unique serine tRNA that contains a leucine 5'-CAG-3'anticodon (tRNA(CAG)(Ser)). We are using this codon identity redefinition as a model system to elucidate the evolution of genetic code alterations. METHODOLOGY/PRINCIPAL FINDINGS: We have reconstructed the early stages of the Candida genetic code alteration by engineering tRNAs that partially reverted the identity of serine CUG codons back to their standard leucine meaning. Such genetic code manipulation had profound cellular consequences as it exposed important morphological variation, altered gene expression, re-arranged the karyotype, increased cell-cell adhesion and secretion of hydrolytic enzymes. CONCLUSION/SIGNIFICANCE: Our study provides the first experimental evidence for an important role of genetic code alterations as generators of phenotypic diversity of high selective potential and supports the hypothesis that they speed up evolution of new phenotypes.


Assuntos
Candida albicans/genética , Candida albicans/fisiologia , Biodiversidade , Códon , Regulação da Expressão Gênica , Código Genético , Variação Genética , Genoma Fúngico , Genômica , Cariotipagem , Modelos Genéticos , Fenótipo , Ploidias , Proteômica/métodos , RNA de Transferência/química , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...