Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 29(17): 2775-2789.e7, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31422881

RESUMO

Lower urinary tract symptoms (LUTS) are exceptionally common and debilitating, and they are likely caused or exacerbated by dysfunction of neural circuits controlling bladder function. An incomplete understanding of neural control of bladder function limits our ability to clinically address LUTS. Barrington's nucleus (Bar) provides descending control of bladder and sphincter function, and its glutamatergic neurons expressing corticotropin releasing hormone (BarCrh/Vglut2) are implicated in bladder control. However, it remains unclear whether this subset of Bar neurons is necessary for voiding, and the broader circuitry providing input to this control center remains largely unknown. Here, we examine the contribution to micturition behavior of BarCrh/Vglut2 neurons relative to the overall BarVglut2 population. First, we identify robust, excitatory synaptic input to Bar. Glutamatergic axons from the periaqueductal gray (PAG) and lateral hypothalamic area (LHA) intensely innervate and are functionally connected to Bar, and optogenetic stimulation of these axon terminals reliably provokes voiding. Similarly, optogenetic stimulation of BarVglut2 neurons triggers voiding, whereas stimulating the BarCrh/Vglut2 subpopulation causes bladder contraction, typically without voiding. Next, we genetically ablate either BarVglut2 or BarCrh/Vglut2 neurons and found that only BarVglut2 ablation replicates the profound urinary retention produced by conventional lesions in this region. Fiber photometry recordings reveal that BarVglut2 neuron activity precedes increased bladder pressure, while activity of BarCrh/Vglut2 is phase delayed. Finally, deleting Crh from Bar neurons has no effect on voiding and related bladder physiology. Our results help identify the circuitry that modulates Bar neuron activity and identify subtypes that may serve different roles in micturition.


Assuntos
Núcleo de Barrington/fisiologia , Hipotálamo/metabolismo , Mesencéfalo/metabolismo , Neurônios/fisiologia , Micção/fisiologia , Animais , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Masculino , Camundongos , Neurônios Aferentes
2.
Biophys J ; 107(6): 1273-9, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25229135

RESUMO

Urinary bladder undergoes dramatic volume changes during filling and voiding cycles. In the bladder the luminal surface of terminally differentiated urothelial umbrella cells is almost completely covered by plaques. These plaques (500 to 1000 nm) are made of a family of proteins called uroplakins that are known to form a tight barrier to prevent leakage of water and solutes. Electron micrographs from previous studies show these plaques to be interconnected by hinge regions to form structures that appear rigid, but these same structures must accommodate large changes in cell shape during voiding and filling cycles. To resolve this paradox, we measured the stiffness of the intact, living urothelial apical membrane and found it to be highly deformable, even more so than the red blood cell membrane. The intermediate cells underlying the umbrella cells do not have uroplakins but their membranes are an order of magnitude stiffer. Using uroplakin knockout mouse models we show that cell compliance is conferred by uroplakins. This hypercompliance may be essential for the maintenance of barrier function under dramatic cell deformation during filling and voiding of the bladder.


Assuntos
Membrana Celular/metabolismo , Polaridade Celular , Fenômenos Mecânicos , Bexiga Urinária/citologia , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Camundongos , Protaminas/farmacologia , Bexiga Urinária/efeitos dos fármacos
3.
FEBS Lett ; 587(14): 2083-9, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23732702

RESUMO

Oxygenic photosynthetic organisms use sunlight energy to oxidize water to molecular oxygen. This process is mediated by the photosystem II complex at the lumenal side of the thylakoid membrane. Most research efforts have been dedicated to understanding the mechanism behind the unique water oxidation reactions, whereas the delivery pathways for water molecules into the thylakoid lumen have not yet been studied. The most common mechanisms for water transport are simple diffusion and diffusion facilitated by specialized channel proteins named aquaporins. Calculations using published data for plant chloroplasts indicate that aquaporins are not necessary to sustain water supply into the thylakoid lumen at steady state photosynthetic rates. Yet, arguments for their presence in the plant thylakoid membrane and beneficial action are presented.


Assuntos
Aquaporinas/metabolismo , Fotossíntese , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Água/metabolismo , Cloroplastos/metabolismo , Osmose , Oxirredução , Permeabilidade , Plantas/metabolismo
4.
J Biol Chem ; 287(14): 11011-7, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22315218

RESUMO

Lipid bilayers and biological membranes are freely permeable to CO(2), and yet partial CO(2) pressure in the urine is 3-4-fold higher than in blood. We hypothesized that the responsible permeability barrier to CO(2) resides in the umbrella cell apical membrane of the bladder with its dense array of uroplakin complexes. We found that disrupting the uroplakin layer of the urothelium resulted in water and urea permeabilities (P) that were 7- to 8-fold higher than in wild type mice with intact urothelium. However, these interventions had no impact on bladder P(CO2) (∼1.6 × 10(-4) cm/s). To test whether the observed permeability barrier to CO(2) was due to an unstirred layer effect or due to kinetics of CO(2) hydration, we first measured the carbonic anhydrase (CA) activity of the bladder epithelium. Finding none, we reduced the experimental system to an epithelial monolayer, Madin-Darby canine kidney cells. With CA present inside and outside the cells, we showed that P(CO2) was unstirred layer limited (∼7 × 10(-3) cm/s). However, in the total absence of CA activity P(CO2) decreased 14-fold (∼ 5.1 × 10(-4) cm/s), indicating that now CO(2) transport is limited by the kinetics of CO(2) hydration. Expression of aquaporin-1 did not alter P(CO2) (and thus the limiting transport step), which confirmed the conclusion that in the urinary bladder, low P(CO2) is due to the lack of CA. The observed dependence of P(CO2) on CA activity suggests that the tightness of biological membranes to CO(2) may uniquely be regulated via CA expression.


Assuntos
Dióxido de Carbono/metabolismo , Uroplaquina III/metabolismo , Uroplaquina II/metabolismo , Urotélio/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Linhagem Celular , Cães , Técnicas de Inativação de Genes , Camundongos , Permeabilidade/efeitos dos fármacos , Uroplaquina II/deficiência , Uroplaquina II/genética , Uroplaquina III/deficiência , Uroplaquina III/genética , Urotélio/efeitos dos fármacos , Urotélio/enzimologia
5.
Chem Phys Lipids ; 163(6): 630-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20447383

RESUMO

Diphytanoylphosphatidylcholine (DPhyPC) is a branched chain lipid often used for model membrane studies, including peptide/lipid interactions, ion channels and lipid rafts. This work reports results of volume measurements, water permeability measurements P(f), X-ray scattering from oriented samples, and X-ray and neutron scattering from unilamellar vesicles at T=30 degrees C. We measured the volume/lipid V(L)=1426+/-1A(3). The area/lipid was found to be 80.5+/-1.5A(2) when both X-ray and neutron data were combined with the SDP model analysis (Kucerka, N., Nagle, J.F., Sachs, J.N., Feller, S.E., Pencer, J., Jackson, A., Katsaras, J., 2008. Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys. J. 95, 2356-2367); this is substantially larger than the area of DOPC which has the largest area of the common linear chain lipids. P(f) was measured to be (7.0+/-1.0)x10(-3)cm/s; this is considerably smaller than predicted by the recently proposed 3-slab model (Nagle, J.F., Mathai, J.C., Zeidel, M.L., Tristram-Nagle, S., 2008. Theory of passive permeability through lipid bilayers. J. Gen. Physiol. 131, 77-85). This disagreement can be understood if there is a diminished diffusion coefficient in the hydrocarbon core of DPhyPC and that is supported by previous molecular dynamics simulations (Shinoda, W., Mikami, M., Baba, T., Hato, M., 2004. Molecular dynamics study on the effects of chain branching on the physical properties of lipid bilayers. 2. Permeability. J. Phys. Chem. B 108, 9346-9356). While the DPhyPC head-head thickness (D(HH)=36.4A), and Hamaker parameter (H=4.5x10(-21)J) were similar to the linear chain lipid DOPC, the bending modulus (K(C)=5.2+/-0.5x10(-21)J) was 30% smaller. Our results suggest that, from the biophysical perspective, DPhyPC belongs to a different family of lipids than phosphatidylcholines that have linear chain hydrocarbon chains.


Assuntos
Fosfatidilcolinas/química , Água/química , Bicamadas Lipídicas/química , Difração de Nêutrons , Permeabilidade , Fosfatidilcolinas/metabolismo , Difração de Raios X
6.
Proc Natl Acad Sci U S A ; 106(39): 16633-8, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19805349

RESUMO

Hydrogen sulfide (H(2)S) has emerged as a new and important member in the group of gaseous signaling molecules. However, the molecular transport mechanism has not yet been identified. Because of structural similarities with H(2)O, it was hypothesized that aquaporins may facilitate H(2)S transport across cell membranes. We tested this hypothesis by reconstituting the archeal aquaporin AfAQP from sulfide reducing bacteria Archaeoglobus fulgidus into planar membranes and by monitoring the resulting facilitation of osmotic water flow and H(2)S flux. To measure H(2)O and H(2)S fluxes, respectively, sodium ion dilution and buffer acidification by proton release (H(2)S left arrow over right arrow H(+) + HS(-)) were recorded in the immediate membrane vicinity. Both sodium ion concentration and pH were measured by scanning ion-selective microelectrodes. A lower limit of lipid bilayer permeability to H(2)S, P(M,H(2)S) >or = 0.5 +/- 0.4 cm/s was calculated by numerically solving the complete system of differential reaction diffusion equations and fitting the theoretical pH distribution to experimental pH profiles. Even though reconstitution of AfAQP significantly increased water permeability through planar lipid bilayers, P(M,H(2)S) remained unchanged. These results indicate that lipid membranes may well act as a barrier to water transport although they do not oppose a significant resistance to H(2)S diffusion. The fact that cholesterol and sphingomyelin reconstitution did not turn these membranes into an H(2)S barrier indicates that H(2)S transport through epithelial barriers, endothelial barriers, and membrane rafts also occurs by simple diffusion and does not require facilitation by membrane channels.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Aquaporinas/metabolismo , Proteínas Arqueais/metabolismo , Archaeoglobus fulgidus/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Colesterol/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Osmose , Permeabilidade , Esfingomielinas/metabolismo , Água/metabolismo
7.
Chem Phys Lipids ; 160(1): 33-44, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19416724

RESUMO

The structure and water permeability of bilayers composed of the ether-linked lipid, dihexadecylphosphatidylcholine (DHPC), were studied and compared with the ester-linked lipid, dipalmitoylphosphaditdylcholine (DPPC). Wide angle X-ray scattering on oriented bilayers in the fluid phase indicate that the area per lipid A is slightly larger for DHPC than for DPPC. Low angle X-ray scattering yields A=65.1A(2) for DHPC at 48 degrees C. LAXS data provide the bending modulus, K(C)=4.2x10(-13)erg, and the Hamaker parameter H=7.2x10(-14)erg for the van der Waals attractive interaction between neighboring bilayers. For the low temperature phases with ordered hydrocarbon chains, we confirm the transition from a tilted L(beta') gel phase to an untilted, interdigitated L(beta)I phase as the sample hydrates at 20 degrees C. Our measurement of water permeability, P(f)=0.022cm/s at 48 degrees C for fluid phase DHPC is slightly smaller than that of DPPC (P(f)=0.027cm/s) at 50 degrees C, consistent with our triple slab theory of permeability.


Assuntos
Éteres/química , Bicamadas Lipídicas/química , Água/química , 1,2-Dipalmitoilfosfatidilcolina/química , Algoritmos , Ésteres/química , Permeabilidade , Espalhamento de Radiação
8.
J Mol Biol ; 387(3): 619-27, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19361419

RESUMO

Urea transporters (UTs) facilitate urea permeation across cell membranes in prokaryotes and eukaryotes. Bacteria use urea as a means to survive in acidic environments and/or as a nitrogen source. The UT from Actinobacillus pleuropneumoniae, ApUT, the pathogen that causes porcine pleurisy and pneumonia, was expressed in Escherichia coli and purified. Analysis of the recombinant protein using cross-linking and blue-native gel electrophoresis established that ApUT is a dimer in detergent solution. Purified protein was reconstituted into proteoliposomes and urea efflux was measured by stopped-flow fluorometry to determine the urea transport kinetics of ApUT. The measured urea flux was saturable, could be inhibited by phloretin, and was not affected by pH. Two-dimensional crystals of the biologically active ApUT show that it is also dimeric in a lipid membrane and provide the first structural information on a member of the UT family.


Assuntos
Actinobacillus pleuropneumoniae/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Estrutura Quaternária de Proteína , Actinobacillus pleuropneumoniae/química , Animais , Proteínas de Bactérias/genética , Cristalização , Detergentes/química , Dimerização , Humanos , Proteínas de Membrana Transportadoras/genética , Permeabilidade , Suínos , Ureia/metabolismo , Transportadores de Ureia
9.
J Biol Chem ; 283(37): 25340-25347, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18617525

RESUMO

Several membrane channels, like aquaporin-1 (AQP1) and the RhAG protein of the rhesus complex, were hypothesized to be of physiological relevance for CO(2) transport. However, the underlying assumption that the lipid matrix imposes a significant barrier to CO(2) diffusion was never confirmed experimentally. Here we have monitored transmembrane CO(2) flux (J(CO2)) by imposing a CO(2) concentration gradient across planar lipid bilayers and detecting the resulting small pH shift in the immediate membrane vicinity. An analytical model, which accounts for the presence of both carbonic anhydrase and buffer molecules, was fitted to the experimental pH profiles using inverse problems techniques. At pH 7.4, the model revealed that J(CO2) was entirely rate-limited by near-membrane unstirred layers (USL), which act as diffusional barriers in series with the membrane. Membrane tightening by sphingomyelin and cholesterol did not alter J(CO2) confirming that membrane resistance was comparatively small. In contrast, a pH-induced shift of the CO(2) hydration-dehydration equilibrium resulted in a relative membrane contribution of about 15% to the total resistance (pH 9.6). Under these conditions, a membrane CO(2) permeability (3.2 +/- 1.6 cm/s) was estimated. It indicates that cellular CO(2) uptake (pH 7.4) is always USL-limited, because the USL size always exceeds 1 mum. Consequently, facilitation of CO(2) transport by AQP1, RhAG, or any other protein is highly unlikely. The conclusion was confirmed by the observation that CO(2) permeability of epithelial cell monolayers was always the same whether AQP1 was overexpressed in both the apical and basolateral membranes or not.


Assuntos
Dióxido de Carbono/química , Membrana Celular/metabolismo , Animais , Aquaporina 1/química , Transporte Biológico , Anidrases Carbônicas/química , Difusão , Cães , Eletrodos , Células Epiteliais/citologia , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Lipídeos/química , Permeabilidade , Esfingomielinas/química
10.
J Gen Physiol ; 131(1): 69-76, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18166626

RESUMO

Despite intense study over many years, the mechanisms by which water and small nonelectrolytes cross lipid bilayers remain unclear. While prior studies of permeability through membranes have focused on solute characteristics, such as size, polarity, and partition coefficient in hydrophobic solvent, we focus here on water permeability in seven single component bilayers composed of different lipids, five with phosphatidylcholine headgroups and different chain lengths and unsaturation, one with a phosphatidylserine headgroup, and one with a phosphatidylethanolamine headgroup. We find that water permeability correlates most strongly with the area/lipid and is poorly correlated with bilayer thickness and other previously determined structural and mechanical properties of these single component bilayers. These results suggest a new model for permeability that is developed in the accompanying theoretical paper in which the area occupied by the lipid is the major determinant and the hydrocarbon thickness is a secondary determinant. Cholesterol was also incorporated into DOPC bilayers and X-ray diffuse scattering was used to determine quantitative structure with the result that the area occupied by DOPC in the membrane decreases while bilayer thickness increases in a correlated way because lipid volume does not change. The water permeability decreases with added cholesterol and it correlates in a different way from pure lipids with area per lipid, bilayer thickness, and also with area compressibility.


Assuntos
Bicamadas Lipídicas/química , Membranas Artificiais , Água , Permeabilidade da Membrana Celular , Colesterol/análise , Modelos Biológicos , Permeabilidade , Fosfatidilcolinas/análise
11.
J Gen Physiol ; 131(1): 77-85, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18166627

RESUMO

Recently measured water permeability through bilayers of different lipids is most strongly correlated with the area per lipid A rather than with other structural quantities such as the thickness. This paper presents a simple three-layer theory that incorporates the area dependence in a physically realistic way and also includes the thickness as a secondary modulating parameter. The theory also includes the well-known strong correlation of permeability upon the partition coefficients of general solutes in hydrocarbon environments (Overton's rule). Two mathematical treatments of the theory are given; one model uses discrete chemical kinetics and one model uses the Nernst-Planck continuum equation. The theory is fit to the recent experiments on water permeability in the accompanying paper.


Assuntos
Bicamadas Lipídicas , Membranas Artificiais , Modelos Teóricos , Água , Permeabilidade da Membrana Celular , Bicamadas Lipídicas/química , Modelos Biológicos , Permeabilidade , Fosfatidilcolinas/análise
12.
Methods Mol Biol ; 400: 323-32, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17951743

RESUMO

Osmotic water permeability and solute permeability coefficient are measured using stopped-flow fluorimetry. In a vesicle that behaves as a perfect osmometer, water flux is directly proportional to imposed osmotic pressure, and solute flux is proportional to the chemical gradient across the vesicle. The flux of water and solute leads to a change in vesicle volume. This change in volume is measured by fluorescence quenching of entrapped carboxyfluorescein in the vesicle. Equations relating volume change of the vesicle to flux of water or solute from the vesicle are given to enable computation of water and solute permeability coefficients.


Assuntos
Permeabilidade da Membrana Celular , Membrana Celular/química , Escherichia coli/química , Lipossomos/química , Água/química , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Fluorometria , Lipossomos/metabolismo , Água/metabolismo
13.
J Gen Physiol ; 130(1): 111-6, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17591989

RESUMO

Determining the mechanisms of flux through protein channels requires a combination of structural data, permeability measurement, and molecular dynamics (MD) simulations. To further clarify the mechanism of flux through aquaporin 1 (AQP1), osmotic p(f) (cm(3)/s/pore) and diffusion p(d) (cm(3)/s/pore) permeability coefficients per pore of H(2)O and D(2)O in AQP1 were calculated using MD simulations. We then compared the simulation results with experimental measurements of the osmotic AQP1 permeabilities of H(2)O and D(2)O. In this manner we evaluated the ability of MD simulations to predict actual flux results. For the MD simulations, the force field parameters of the D(2)O model were reparameterized from the TIP3P water model to reproduce the experimentally observed difference in the bulk self diffusion constants of H(2)O vs. D(2)O. Two MD systems (one for each solvent) were constructed, each containing explicit palmitoyl-oleoyl-phosphatidyl-ethanolamine (POPE) phospholipid molecules, solvent, and AQP1. It was found that the calculated value of p(f) for D(2)O is approximately 15% smaller than for H(2)O. Bovine AQP1 was reconstituted into palmitoyl-oleoyl-phosphatidylcholine (POPC) liposomes, and it was found that the measured macroscopic osmotic permeability coefficient P(f) (cm/s) of D(2)O is approximately 21% lower than for H(2)O. The combined computational and experimental results suggest that deuterium oxide permeability through AQP1 is similar to that of water. The slightly lower observed osmotic permeability of D(2)O compared to H(2)O in AQP1 is most likely due to the lower self diffusion constant of D(2)O.


Assuntos
Aquaporina 1/metabolismo , Óxido de Deutério/metabolismo , Água/metabolismo , Animais , Aquaporina 1/química , Bovinos , Permeabilidade da Membrana Celular , Simulação por Computador , Modelos Químicos , Modelos Moleculares , Conformação Proteica , Reprodutibilidade dos Testes
14.
J Biol Chem ; 281(15): 10016-23, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16484230

RESUMO

The membranes of extremely halophilic Archaea are characterized by the abundance of a diacidic phospholipid, archaetidylglycerol methylphosphate (PGP-Me), which accounts for 50-80 mol% of the polar lipids, and by the absence of phospholipids with choline, ethanolamine, inositol, and serine head groups. These membranes are stable in concentrated 3-5 m NaCl solutions, whereas membranes of non-halophilic Archaea, which do not contain PGP-Me, are unstable and leaky under such conditions. By x-ray diffraction and vesicle permeability measurements, we demonstrate that PGP-Me contributes in an essential way to membrane stability in hypersaline environments. Large unilamellar vesicles (LUV) prepared from the polar lipids of extreme halophiles, Halobacterium halobium and Halobacterium salinarum, retain entrapped carboxyfluorescein and resist aggregation in the whole range 0-4 m NaCl, similarly to LUV prepared from purified PGP-Me. By contrast, LUV made of polar lipid extracts from moderately halophilic and non-halophilic Archaea (Methanococcus jannaschii, Methanosarcina mazei, Methanobrevibacter smithii) are leaky and aggregate at high salt concentrations. However, adding PGP-Me to M. mazei lipids results in gradual enhancement of LUV stability, correlating with the PGP-Me content. The LUV data are substantiated by the x-ray results, which show that H. halobium and M. mazei lipids have dissimilar phase behavior and form different structures at high NaCl concentrations. H. halobium lipids maintain an expanded lamellar structure with spacing of 8.5-9 nm, which is stable up to at least 100 degrees C in 2 m NaCl and up to approximately 60 degrees C in 4 m NaCl. However, M. mazei lipids form non-lamellar structures, represented by the Pn3m cubic phase and the inverted hexagonal H(II) phase. From these data, the forces preventing membrane aggregation in halophilic Archaea appear to be steric repulsion, because of the large head group of PGP-Me, or possibly out-of-plane bilayer undulations, rather than electrostatic repulsion attributed to the doubly charged PGP-Me head group.


Assuntos
Membrana Celular/química , Lipídeos de Membrana/química , Sais/farmacologia , Proteínas Arqueais/química , Colina/química , Cristalografia por Raios X , Glicolipídeos/química , Halobacterium salinarum/metabolismo , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Lipídeos/química , Modelos Químicos , Fosfolipídeos/química , Cloreto de Sódio/farmacologia , Temperatura , Fatores de Tempo , Raios X
15.
Am J Physiol Cell Physiol ; 289(2): C397-407, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15800049

RESUMO

Aquaporins (AQPs) accelerate the movement of water and other solutes across biological membranes, yet the molecular mechanisms of each AQP's transport function and the diverse physiological roles played by AQP family members are still being defined. We therefore have characterized an AQP in a model organism, Drosophila melanogaster, which is amenable to genetic manipulation and developmental analysis. To study the mechanism of Drosophila Malpighian tubule (MT)-facilitated water transport, we identified seven putative AQPs in the Drosophila genome and found that one of these, previously named DRIP, has the greatest sequence similarity to those vertebrate AQPs that exhibit the highest rates of water transport. In situ mRNA analyses showed that DRIP is expressed in both embryonic and adult MTs, as well as in other tissues in which fluid transport is essential. In addition, the pattern of DRIP expression was dynamic. To define DRIP-mediated water transport, the protein was expressed in Xenopus oocytes and in yeast secretory vesicles, and we found that significantly elevated rates of water transport correlated with DRIP expression. Moreover, the activation energy required for water transport in DRIP-expressing secretory vesicles was 4.9 kcal/mol. This low value is characteristic of AQP-mediated water transport, whereas the value in control vesicles was 16.4 kcal/mol. In contrast, glycerol, urea, ammonia, and proton transport were unaffected by DRIP expression, suggesting that DRIP is a highly selective water-specific channel. This result is consistent with the homology between DRIP and mammalian water-specific AQPs. Together, these data establish Drosophila as a new model system with which to investigate AQP function.


Assuntos
Aquaporinas/genética , Aquaporinas/metabolismo , Transporte Biológico/fisiologia , Drosophila melanogaster/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Hibridização In Situ , Túbulos de Malpighi/metabolismo , Dados de Sequência Molecular , RNA Mensageiro/análise , Homologia de Sequência de Aminoácidos , Água/metabolismo
17.
Am J Physiol Renal Physiol ; 289(1): F83-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15727989

RESUMO

Elasmobranchs such as the dogfish shark Squalus acanthius achieve osmotic homeostasis by maintaining urea concentrations in the 300- to 400-mM range, thus offsetting to some degree ambient marine osmolalities of 900-1,000 mosmol/kgH(2)O. These creatures also maintain salt balance without losing urea by secreting a NaCl-rich (500 mM) and urea-poor (18 mM) fluid from the rectal gland that is isotonic with the plasma. The composition of the rectal gland fluid suggests that its epithelial cells are permeable to water and not to urea. Because previous work showed that lipid bilayers that permit water flux do not block flux of urea, we reasoned that the plasma membranes of rectal gland epithelial cells must either have aquaporin water channels or must have some selective barrier to urea flux. We therefore isolated apical and basolateral membranes from shark rectal glands and determined their permeabilities to water and urea. Apical membrane fractions were markedly enriched for Na-K-2Cl cotransporter, whereas basolateral membrane fractions were enriched for Na-K-ATPase. Basolateral membrane osmotic water permeability (P(f)) averaged 4.3 +/- 1.3 x 10(-3) cm/s, whereas urea permeability averaged 4.2 +/- 0.8 x 10(-7) cm/s. The activation energy for water flow averaged 16.4 kcal/mol. Apical membrane P(f) averaged 7.5 +/- 1.6 x 10(-4) cm/s, and urea permeability averaged 2.2 +/- 0.4 x 10(-7) cm/s, with an average activation energy for water flow of 18.6 kcal/mol. The relatively low water permeabilities and high activation energies argue strongly against water flux via aquaporins. Comparison of membrane water and urea permeabilities with those of artificial liposomes and other isolated biological membranes indicates that the basolateral membrane urea permeability is fivefold lower than would be anticipated for its water permeability. These results indicate that the rectal gland maintains a selective barrier to urea in its basolateral membranes.


Assuntos
Glândula de Sal/fisiologia , Squalus acanthias/fisiologia , Ureia/metabolismo , Animais , Transporte Biológico , Epitélio/fisiologia , Permeabilidade , Vesículas Transportadoras/fisiologia , Água/metabolismo
18.
J Biol Chem ; 280(8): 7186-93, 2005 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15611083

RESUMO

The accumulation and transport of solutes are hallmarks of osmoadaptation. In this study we have employed the inability of the Saccharomyces cerevisiae gpd1Delta gpd2Delta mutant both to produce glycerol and to adapt to high osmolarity to study solute transport through aquaglyceroporins and the control of osmostress-induced signaling. High levels of different polyols, including glycerol, inhibited growth of the gpd1Delta gpd2Delta mutant. This growth inhibition was suppressed by expression of the hyperactive allele Fps1-Delta1 of the osmogated yeast aquaglyceroporin, Fps1. The degree of suppression correlated with the relative rate of transport of the different polyols tested. Transport studies in secretory vesicles confirmed that Fps1-Delta1 transports polyols at increased rates compared with wild type Fps1. Importantly, wild type Fps1 and Fps1-Delta1 showed similarly low permeability for water. The growth defect on polyols in the gpd1Delta gpd2Delta mutant was also suppressed by expression of a heterologous aquaglyceroporin, rat AQP9. We surmised that this suppression was due to polyol influx, causing the cells to passively adapt to the stress. Indeed, when aquaglyceroporin-expressing gpd1Delta gpd2Delta mutants were treated with glycerol, xylitol, or sorbitol, the osmosensing HOG pathway was activated, and the period of activation correlated with the apparent rate of polyol uptake. This observation supports the notion that deactivation of the HOG pathway is closely coupled to osmotic adaptation. Taken together, our "conditional" osmotic stress system facilitates studies on aquaglyceroporin function and reveals features of the osmosensing and signaling system.


Assuntos
Pressão Osmótica , Porinas/metabolismo , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Transporte Biológico , Cinética , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Álcoois Açúcares/metabolismo , Álcoois Açúcares/farmacologia
19.
Am J Physiol Cell Physiol ; 287(1): C235-42, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-14998788

RESUMO

Teleosts and elasmobranchs faced with considerable osmotic challenges living in sea water, use compensatory mechanisms to survive the loss of water (teleosts) and urea (elasmobranchs) across epithelial surfaces. We hypothesized that the gill, with a high surface area for gas exchange must have an apical membrane of exceptionally low permeability to prevent equilibration between seawater and plasma. We isolated apical membrane vesicles from the gills of Pleuronectes americanus (winter flounder) and Squalus acanthias (dogfish shark) and demonstrated approximately sixfold enrichment of the apical marker, ADPase compared to homogenate. We also isolated basolateral membranes from shark gill (enriched 2.3-fold for Na-K-ATPase) and using stopped-flow fluorometry measured membrane permeabilities to water, urea, and NH(3). Apical membrane water permeabilities were similar between species and quite low (7.4 +/- 0.7 x 10(-4) and 6.6 +/- 0.8 x 10(-4) cm/s for shark and flounder, respectively), whereas shark basolateral membranes showed twofold higher water permeability (14 +/- 2 x 10(-4) cm/s). Permeabilities to urea and NH(3) were also low in apical membranes. Because of the much lower apical to basolateral surface area we conclude that the apical membrane represents an effective barrier. However, the values we obtained were not low enough to account for low water loss (teleosts) and urea loss (elasmobranchs) measured in vivo by others. We conclude that there are other mechanisms which permit gill epithelia to serve as effective barriers. This conclusion has implications for the function of other barrier epithelia, such as the gastric mucosa, mammalian bladder, and renal thick ascending limb.


Assuntos
Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , Cação (Peixe)/metabolismo , Linguado/metabolismo , Brânquias/metabolismo , Bicamadas Lipídicas/metabolismo , Amônia/farmacocinética , Animais , Apirase/metabolismo , Membranas Intracelulares/metabolismo , Permeabilidade , Ureia/farmacocinética , Água/metabolismo , Equilíbrio Hidroeletrolítico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...