Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38740719

RESUMO

PURPOSE: Lymph nodes (LNs) in the chest have a tendency to enlarge due to various pathologies, such as lung cancer or pneumonia. Clinicians routinely measure nodal size to monitor disease progression, confirm metastatic cancer, and assess treatment response. However, variations in their shapes and appearances make it cumbersome to identify LNs, which reside outside of most organs. METHODS: We propose to segment LNs in the mediastinum by leveraging the anatomical priors of 28 different structures (e.g., lung, trachea etc.) generated by the public TotalSegmentator tool. The CT volumes from 89 patients available in the public NIH CT Lymph Node dataset were used to train three 3D off-the-shelf nnUNet models to segment LNs. The public St. Olavs dataset containing 15 patients (out-of-training-distribution) was used to evaluate the segmentation performance. RESULTS: For LNs with short axis diameter ≥ 8 mm, the 3D cascade nnUNet model obtained the highest Dice score of 67.9 ± 23.4 and lowest Hausdorff distance error of 22.8 ± 20.2. For LNs of all sizes, the Dice score was 58.7 ± 21.3 and this represented a ≥ 10% improvement over a recently published approach evaluated on the same test dataset. CONCLUSION: To our knowledge, we are the first to harness 28 distinct anatomical priors to segment mediastinal LNs, and our work can be extended to other nodal zones in the body. The proposed method has the potential for improved patient outcomes through the identification of enlarged nodes in initial staging CT scans.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38758290

RESUMO

PURPOSE: Body composition measurements from routine abdominal CT can yield personalized risk assessments for asymptomatic and diseased patients. In particular, attenuation and volume measures of muscle and fat are associated with important clinical outcomes, such as cardiovascular events, fractures, and death. This study evaluates the reliability of an Internal tool for the segmentation of muscle and fat (subcutaneous and visceral) as compared to the well-established public TotalSegmentator tool. METHODS: We assessed the tools across 900 CT series from the publicly available SAROS dataset, focusing on muscle, subcutaneous fat, and visceral fat. The Dice score was employed to assess accuracy in subcutaneous fat and muscle segmentation. Due to the lack of ground truth segmentations for visceral fat, Cohen's Kappa was utilized to assess segmentation agreement between the tools. RESULTS: Our Internal tool achieved a 3% higher Dice (83.8 vs. 80.8) for subcutaneous fat and a 5% improvement (87.6 vs. 83.2) for muscle segmentation, respectively. A Wilcoxon signed-rank test revealed that our results were statistically different with p < 0.01. For visceral fat, the Cohen's Kappa score of 0.856 indicated near-perfect agreement between the two tools. Our internal tool also showed very strong correlations for muscle volume (R 2 =0.99), muscle attenuation (R 2 =0.93), and subcutaneous fat volume (R 2 =0.99) with a moderate correlation for subcutaneous fat attenuation (R 2 =0.45). CONCLUSION: Our findings indicated that our Internal tool outperformed TotalSegmentator in measuring subcutaneous fat and muscle. The high Cohen's Kappa score for visceral fat suggests a reliable level of agreement between the two tools. These results demonstrate the potential of our tool in advancing the accuracy of body composition analysis.

3.
ArXiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38529074

RESUMO

Pheochromocytomas and Paragangliomas (PPGLs) are rare adrenal and extra-adrenal tumors which have the potential to metastasize. For the management of patients with PPGLs, CT is the preferred modality of choice for precise localization and estimation of their progression. However, due to the myriad variations in size, morphology, and appearance of the tumors in different anatomical regions, radiologists are posed with the challenge of accurate detection of PPGLs. Since clinicians also need to routinely measure their size and track their changes over time across patient visits, manual demarcation of PPGLs is quite a time-consuming and cumbersome process. To ameliorate the manual effort spent for this task, we propose an automated method to detect PPGLs in CT studies via a proxy segmentation task. As only weak annotations for PPGLs in the form of prospectively marked 2D bounding boxes on an axial slice were available, we extended these 2D boxes into weak 3D annotations and trained a 3D full-resolution nnUNet model to directly segment PPGLs. We evaluated our approach on a dataset consisting of chest-abdomen-pelvis CTs of 255 patients with confirmed PPGLs. We obtained a precision of 70% and sensitivity of 64.1% with our proposed approach when tested on 53 CT studies. Our findings highlight the promising nature of detecting PPGLs via segmentation, and furthers the state-of-the-art in this exciting yet challenging area of rare cancer management.

4.
ArXiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38529079

RESUMO

Coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular disease (CVD). However, manual assessment of CAC often requires radiological expertise, time, and invasive imaging techniques. The purpose of this multicenter study is to validate an automated cardiac plaque detection model using a 3D multiclass nnU-Net for gated and non-gated non-contrast chest CT volumes. CT scans were performed at three tertiary care hospitals and collected as three datasets, respectively. Heart, aorta, and lung segmentations were determined using TotalSegmentator, while plaques in the coronary arteries and heart valves were manually labeled for 801 volumes. In this work we demonstrate how the nnU-Net semantic segmentation pipeline may be adapted to detect plaques in the coronary arteries and valves. With a linear correction, nnU-Net deep learning methods may also accurately estimate Agatston scores on chest non-contrast CT scans. Compared to manual Agatson scoring, automated Agatston scoring indicated a slope of the linear regression of 0.841 with an intercept of +16 HU (R2 = 0.97). These results are an improvement over previous work assessing automated Agatston score computation in non-gated CT scans.

5.
ArXiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38529076

RESUMO

Multi-parametric MRI of the body is routinely acquired for the identification of abnormalities and diagnosis of diseases. However, a standard naming convention for the MRI protocols and associated sequences does not exist due to wide variations in imaging practice at institutions and myriad MRI scanners from various manufacturers being used for imaging. The intensity distributions of MRI sequences differ widely as a result, and there also exists information conflicts related to the sequence type in the DICOM headers. At present, clinician oversight is necessary to ensure that the correct sequence is being read and used for diagnosis. This poses a challenge when specific series need to be considered for building a cohort for a large clinical study or for developing AI algorithms. In order to reduce clinician oversight and ensure the validity of the DICOM headers, we propose an automated method to classify the 3D MRI sequence acquired at the levels of the chest, abdomen, and pelvis. In our pilot work, our 3D DenseNet-121 model achieved an F1 score of 99.5% at differentiating 5 common MRI sequences obtained by three Siemens scanners (Aera, Verio, Biograph mMR). To the best of our knowledge, we are the first to develop an automated method for the 3D classification of MRI sequences in the chest, abdomen, and pelvis, and our work has outperformed the previous state-of-the-art MRI series classifiers.

6.
ArXiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38529078

RESUMO

The skeletal region is one of the common sites of metastatic spread of cancer in the breast and prostate. CT is routinely used to measure the size of lesions in the bones. However, they can be difficult to spot due to the wide variations in their sizes, shapes, and appearances. Precise localization of such lesions would enable reliable tracking of interval changes (growth, shrinkage, or unchanged status). To that end, an automated technique to detect bone lesions is highly desirable. In this pilot work, we developed a pipeline to detect bone lesions (lytic, blastic, and mixed) in CT volumes via a proxy segmentation task. First, we used the bone lesions that were prospectively marked by radiologists in a few 2D slices of CT volumes and converted them into weak 3D segmentation masks. Then, we trained a 3D full-resolution nnUNet model using these weak 3D annotations to segment the lesions and thereby detected them. Our automated method detected bone lesions in CT with a precision of 96.7% and recall of 47.3% despite the use of incomplete and partial training data. To the best of our knowledge, we are the first to attempt the direct detection of bone lesions in CT via a proxy segmentation task.

7.
Comput Med Imaging Graph ; 114: 102363, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447381

RESUMO

Reliable localization of lymph nodes (LNs) in multi-parametric MRI (mpMRI) studies plays a major role in the assessment of lymphadenopathy and staging of metastatic disease. Radiologists routinely measure the nodal size in order to distinguish benign from malignant nodes, which require subsequent cancer staging. However, identification of lymph nodes is a cumbersome task due to their myriad appearances in mpMRI studies. Multiple sequences are acquired in mpMRI studies, including T2 fat suppressed (T2FS) and diffusion weighted imaging (DWI) sequences among others; consequently, the sizing of LNs is rendered challenging due to the variety of signal intensities in these sequences. Furthermore, radiologists can miss potentially metastatic LNs during a busy clinical day. To lighten these imaging and workflow challenges, we propose a computer-aided detection (CAD) pipeline to detect both benign and malignant LNs in the body for their subsequent measurement. We employed the recently proposed Dynamic Head (DyHead) neural network to detect LNs in mpMRI studies that were acquired using a variety of scanners and exam protocols. The T2FS and DWI series were co-registered, and a selective augmentation technique called Intra-Label LISA (ILL) was used to blend the two volumes with the interpolation factor drawn from a Beta distribution. In this way, ILL diversified the samples that the model encountered during the training phase, while the requirement for both sequences to be present at test time was nullified. Our results showed a mean average precision (mAP) of 53.5% and a sensitivity of ∼78% with ILL at 4 FP/vol. This corresponded to an improvement of ≥10% in mAP and ≥12% in sensitivity at 4FP (p ¡ 0.05) respectively over current LN detection approaches evaluated on the same dataset. We also established the out-of-distribution robustness of the DyHead model by training it on data acquired by a Siemens Aera scanner and testing it on data from the Siemens Verio, Siemens Biograph mMR, and Philips Achieva scanners. Our pilot work represents an important first step towards automated detection, segmentation, and classification of lymph nodes in mpMRI.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Linfonodos/diagnóstico por imagem , Estadiamento de Neoplasias
8.
ArXiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38410656

RESUMO

Purpose: Body composition measurements from routine abdominal CT can yield personalized risk assessments for asymptomatic and diseased patients. In particular, attenuation and volume measures of muscle and fat are associated with important clinical outcomes, such as cardiovascular events, fractures, and death. This study evaluates the reliability of an Internal tool for the segmentation of muscle and fat (subcutaneous and visceral) as compared to the well-established public TotalSegmentator tool. Methods: We assessed the tools across 900 CT series from the publicly available SAROS dataset, focusing on muscle, subcutaneous fat, and visceral fat. The Dice score was employed to assess accuracy in subcutaneous fat and muscle segmentation. Due to the lack of ground truth segmentations for visceral fat, Cohen's Kappa was utilized to assess segmentation agreement between the tools. Results: Our Internal tool achieved a 3% higher Dice (83.8 vs. 80.8) for subcutaneous fat and a 5% improvement (87.6 vs. 83.2) for muscle segmentation respectively. A Wilcoxon signed-rank test revealed that our results were statistically different with p < 0.01. For visceral fat, the Cohen's kappa score of 0.856 indicated near-perfect agreement between the two tools. Our internal tool also showed very strong correlations for muscle volume (R2=0.99), muscle attenuation (R2=0.93), and subcutaneous fat volume (R2=0.99) with a moderate correlation for subcutaneous fat attenuation (R2=0.45). Conclusion: Our findings indicated that our Internal tool outperformed TotalSegmentator in measuring subcutaneous fat and muscle. The high Cohen's Kappa score for visceral fat suggests a reliable level of agreement between the two tools. These results demonstrate the potential of our tool in advancing the accuracy of body composition analysis.

9.
Comput Med Imaging Graph ; 112: 102335, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38271870

RESUMO

Segmentation of multiple pelvic structures in MRI volumes is a prerequisite for many clinical applications, such as sarcopenia assessment, bone density measurement, and muscle-to-fat volume ratio estimation. While many CT-specific datasets and automated CT-based multi-structure pelvis segmentation methods exist, there are few MRI-specific multi-structure segmentation methods in literature. In this pilot work, we propose a lightweight and annotation-free pipeline to synthetically translate T2 MRI volumes of the pelvis to CT, and subsequently leverage an existing CT-only tool called TotalSegmentator to segment 8 pelvic structures in the generated CT volumes. The predicted masks were then mapped back to the original MR volumes as segmentation masks. We compared the predicted masks against the expert annotations of the public TCGA-UCEC dataset and an internal dataset. Experiments demonstrated that the proposed pipeline achieved Dice measures ≥65% for 8 pelvic structures in T2 MRI. The proposed pipeline is an alternative method to obtain multi-organ and structure segmentations without being encumbered by time-consuming manual annotations. By exploiting the significant research progress in CTs, it is possible to extend the proposed pipeline to other MRI sequences in principle. Our research bridges the chasm between the current CT-based multi-structure segmentation and MRI-based segmentation. The manually segmented structures in the TCGA-UCEC dataset are publicly available.


Assuntos
Processamento de Imagem Assistida por Computador , Pelve , Processamento de Imagem Assistida por Computador/métodos , Pelve/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Imageamento por Ressonância Magnética/métodos
10.
Int J Comput Assist Radiol Surg ; 19(1): 163-170, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37326816

RESUMO

PURPOSE: Reliable measurement of lymph nodes (LNs) in multi-parametric MRI (mpMRI) studies of the body plays a major role in the assessment of lymphadenopathy and staging of metastatic disease. Previous approaches do not adequately exploit the complementary sequences in mpMRI to universally detect and segment lymph nodes, and they have shown fairly limited performance. METHODS: We propose a computer-aided detection and segmentation pipeline to leverage the T2 fat-suppressed (T2FS) and diffusion-weighted imaging (DWI) series from a mpMRI study. The T2FS and DWI series in 38 studies (38 patients) were co-registered and blended together using a selective data augmentation technique, such that traits of both series were visible in the same volume. A mask RCNN model was subsequently trained for universal detection and segmentation of 3D LNs. RESULTS: Experiments on 18 test mpMRI studies revealed that the proposed pipeline achieved a precision of [Formula: see text]%, sensitivity of [Formula: see text]% at 4 false positives (FP) per volume, and dice score of [Formula: see text]%. This represented an improvement of [Formula: see text]% in precision, [Formula: see text]% in sensitivity at 4 FP/volume, and [Formula: see text]% in dice score, respectively, over current approaches evaluated on the same dataset. CONCLUSION: Our pipeline universally detected and segmented both metastatic and non-metastatic nodes in mpMRI studies. At test time, the input data used by the trained model could either be the T2FS series alone or a blend of co-registered T2FS and DWI series. Contrary to prior work, this eliminated the reliance on both the T2FS and DWI series in a mpMRI study.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Pulmão , Mediastino , Linfonodos/diagnóstico por imagem , Linfonodos/patologia
11.
ArXiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37502627

RESUMO

Despite the reduction in turn-around times in radiology reporting with the use of speech recognition software, persistent communication errors can significantly impact the interpretation of radiology reports. Pre-filling a radiology report holds promise in mitigating reporting errors, and despite multiple efforts in literature to generate comprehensive medical reports, there lacks approaches that exploit the longitudinal nature of patient visit records in the MIMIC-CXR dataset. To address this gap, we propose to use longitudinal multi-modal data, i.e., previous patient visit CXR, current visit CXR, and the previous visit report, to pre-fill the "findings" section of the patient's current visit. We first gathered the longitudinal visit information for 26,625 patients from the MIMIC-CXR dataset, and created a new dataset called Longitudinal-MIMIC. With this new dataset, a transformer-based model was trained to capture the multi-modal longitudinal information from patient visit records (CXR images + reports) via a cross-attention-based multi-modal fusion module and a hierarchical memory-driven decoder. In contrast to previous works that only uses current visit data as input to train a model, our work exploits the longitudinal information available to pre-fill the "findings" section of radiology reports. Experiments show that our approach outperforms several recent approaches. Code will be published at https://github.com/CelestialShine/Longitudinal-Chest-X-Ray.

12.
Int J Comput Assist Radiol Surg ; 18(2): 313-318, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36333598

RESUMO

PURPOSE: Identification of lymph nodes (LNs) that are suspicious for metastasis in T2 Magnetic Resonance Imaging (MRI) is critical for assessment of lymphadenopathy. Prior work on LN detection has been limited to specific anatomical regions of the body (pelvis, rectum). Therefore, an approach to universally detect both benign and metastatic nodes in T2 MRI studies of the body is highly desirable. METHODS: We developed a Computer Aided Detection (CAD) pipeline to universally identify LN in T2 MRI. First, we trained various neural networks for detecting LN: Faster RCNN with and without Hard Negative Example Mining (HNEM), FCOS, FoveaBox, VFNet, and Detection Transformer (DETR). Next, we show that VFNet with Adaptive Training Sample Selection (ATSS) outperformed Faster RCNN with HNEM. Finally, we ensembled models that surpassed a 45% mAP threshold. RESULTS: Experiments on 122 test studies revealed that VFNet achieved a 51.1% mAP and 78.7% recall at 4 false positives (FP) per volume, while the one-stage model ensemble achieved a mAP of 52.3% and sensitivity of 78.7% at 4FP. We found that VFNet and the one-stage model ensemble can be interchangeably used in the CAD pipeline. CONCLUSION: Our CAD pipeline universally detected both benign and metastatic nodes in T2 MRI studies, resulting in a sensitivity improvement of [Formula: see text]14% over the current LN detection approaches (sensitivity of 78.7% at 4 FP vs. 64.6% at 5 FP per volume).


Assuntos
Linfonodos , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Redes Neurais de Computação , Pelve , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia
13.
Med Image Comput Comput Assist Interv ; 14224: 189-198, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38501075

RESUMO

Despite the reduction in turn-around times in radiology reporting with the use of speech recognition software, persistent communication errors can significantly impact the interpretation of radiology reports. Pre-filling a radiology report holds promise in mitigating reporting errors, and despite multiple efforts in literature to generate comprehensive medical reports, there lacks approaches that exploit the longitudinal nature of patient visit records in the MIMIC-CXR dataset. To address this gap, we propose to use longitudinal multi-modal data, i.e., previous patient visit CXR, current visit CXR, and the previous visit report, to pre-fill the "findings" section of the patient's current visit. We first gathered the longitudinal visit information for 26,625 patients from the MIMIC-CXR dataset, and created a new dataset called Longitudinal-MIMIC. With this new dataset, a transformer-based model was trained to capture the multi-modal longitudinal information from patient visit records (CXR images + reports) via a cross-attention-based multi-modal fusion module and a hierarchical memory-driven decoder. In contrast to previous works that only uses current visit data as input to train a model, our work exploits the longitudinal information available to pre-fill the "findings" section of radiology reports. Experiments show that our approach outperforms several recent approaches by ≥3% on F1 score, and ≥2% for BLEU-4, METEOR and ROUGE-L respectively. Code will be published at https://github.com/CelestialShine/Longitudinal-Chest-X-Ray.

14.
Biomed Opt Express ; 10(10): 5291-5324, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31646047

RESUMO

Optical Coherence Tomography (OCT) is an imaging modality that has been widely adopted for visualizing corneal, retinal and limbal tissue structure with micron resolution. It can be used to diagnose pathological conditions of the eye, and for developing pre-operative surgical plans. In contrast to the posterior retina, imaging the anterior tissue structures, such as the limbus and cornea, results in B-scans that exhibit increased speckle noise patterns and imaging artifacts. These artifacts, such as shadowing and specularity, pose a challenge during the analysis of the acquired volumes as they substantially obfuscate the location of tissue interfaces. To deal with the artifacts and speckle noise patterns and accurately segment the shallowest tissue interface, we propose a cascaded neural network framework, which comprises of a conditional Generative Adversarial Network (cGAN) and a Tissue Interface Segmentation Network (TISN). The cGAN pre-segments OCT B-scans by removing undesired specular artifacts and speckle noise patterns just above the shallowest tissue interface, and the TISN combines the original OCT image with the pre-segmentation to segment the shallowest interface. We show the applicability of the cascaded framework to corneal datasets, demonstrate that it precisely segments the shallowest corneal interface, and also show its generalization capacity to limbal datasets. We also propose a hybrid framework, wherein the cGAN pre-segmentation is passed to a traditional image analysis-based segmentation algorithm, and describe the improved segmentation performance. To the best of our knowledge, this is the first approach to remove severe specular artifacts and speckle noise patterns (prior to the shallowest interface) that affects the interpretation of anterior segment OCT datasets, thereby resulting in the accurate segmentation of the shallowest tissue interface. To the best of our knowledge, this is the first work to show the potential of incorporating a cGAN into larger deep learning frameworks for improved corneal and limbal OCT image segmentation. Our cGAN design directly improves the visualization of corneal and limbal OCT images from OCT scanners, and improves the performance of current OCT segmentation algorithms.

15.
Methods ; 115: 128-143, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27965119

RESUMO

This article is a review of registration algorithms for use between ultrasound images (monomodal image-based ultrasound registration). Ultrasound is safe, inexpensive, and real-time, providing many advantages for clinical and scientific use on both humans and animals, but ultrasound images are also notoriously noisy and subject to several unique artifacts/distortions. This paper introduces the topic and unique aspects of ultrasound-to-ultrasound image registration, providing a broad introduction and summary of the literature and the field. Both theoretical and practical aspects are introduced. The first half of the paper is theoretical, organized according to the basic components of a registration framework, namely preprocessing, image-similarity metrics, optimizers, etc. It further subdivides these methods between those suitable for elastic (non-rigid) vs. inelastic (matrix) transforms. The second half of the paper is organized by anatomy and is practical in nature, presenting and discussing the complete published systems that have been validated for registration in specific anatomic regions.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Órgãos em Risco/diagnóstico por imagem , Reconhecimento Automatizado de Padrão/estatística & dados numéricos , Ultrassonografia/estatística & dados numéricos , Animais , Artefatos , Humanos , Processamento de Imagem Assistida por Computador , Órgãos em Risco/anatomia & histologia , Reconhecimento Automatizado de Padrão/normas , Reprodutibilidade dos Testes , Ultrassonografia/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...