Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Biochemistry ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324671

RESUMO

We previously discovered first-in-class multitargeted 5-substituted pyrrolo[3,2-d]pyrimidine antifolates that inhibit serine hydroxymethyltransferase 2 (SHMT2), resulting in potent in vitro and in vivo antitumor efficacies. In this report, we present crystallographic structures for SHMT2 in complex with an expanded series of pyrrolo[3,2-d]pyrimidine compounds with variations in bridge length (3-5 carbons) and the side chain aromatic ring (phenyl, thiophene, fluorine-substituted phenyl, and thiophene). We evaluated structural features of the inhibitor-SHMT2 complexes and correlations to inhibitor potencies (i.e., Kis), highlighting conserved polar contacts and identifying 5-carbon bridge lengths as key determinants of inhibitor potency. Based on the analysis of SHMT2 structural data, we investigated the impact of mutation of Tyr105 in SHMT2 kinetic analysis and studies with HCT116 cells with inducible expression of wild-type and Y105F SHMT2. Increased enzyme inhibition potency by the pyrrolo[3,2-d]pyrimidine inhibitors with Phe105 SHMT2 accompanied an increased growth inhibition of Phe105-expressing HCT116 cells compared to wild-type SHMT2. Pyrrolo[3,2-d]pyrimidine inhibitors with polyglutamate modifications were evaluated for potencies against SHMT2. We determined the crystal structures of SHMT2 in complex with our lead antifolate AGF347 lacking L-glutamate, or as a diglutamate and triglutamate, for comparison with parent AGF347. These data provide the first insights into the influence of antifolate polyglutamylation on SHMT2:inhibitor interactions. Collectively, our results provide new insights into the critical structural determinants of SHMT2 binding by pyrrolo[3,2-d]pyrimidine inhibitors as novel antitumor agents, as well as the first structural characterization of human SHMT2 in complex with polyglutamates of an SHMT2-targeted antifolate.

2.
Mol Cancer Ther ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377173

RESUMO

One-carbon (C1) metabolism is compartmentalized between the cytosol and mitochondria with the mitochondrial C1 pathway as the major source of glycine and C1 units for cellular biosynthesis. Expression of mitochondrial C1 genes including SLC25A32, serine hydroxymethyl transferase (SHMT) 2, 5,10-methylene tetrahydrofolate dehydrogenase 2, and 5,10-methylene tetrahydrofolate dehydrogenase 1-like was significantly elevated in primary epithelial ovarian cancer (EOC) specimens compared to normal ovaries. 5-Substituted pyrrolo[3,2-d]pyrimidine antifolates (AGF347, AGF359, AGF362) inhibited proliferation of cisplatin sensitive (A2780, CaOV3, IGROV1) and resistant (A2780-E80, SKOV3) EOC cells. In SKOV3 and A2780-E80 cells, colony formation was inhibited. AGF347 induced apoptosis in SKOV3 cells. In IGROV1 cells, AGF347 was transported by folate receptor (FR) α. AGF347 was also transported into IGROV1 and SKOV3 cells by the proton-coupled folate transporter (SLC46A1) and the reduced folate carrier (SLC19A1). AGF347 accumulated to high levels in the cytosol and mitochondria of SKOV3 cells. By targeted metabolomics with [2,3,3-2H]L-serine, AGF347, AGF359 and AGF362 inhibited SHMT2 in the mitochondria. In the cytosol, SHMT1 and de novo purine biosynthesis (i.e., glycinamide ribonucleotide formyltransferase, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase) were targeted; AGF359 also inhibited thymidylate synthase. Antifolate treatments of SKOV3 cells depleted cellular glycine, mitochondrial NADH and glutathione, and showed synergistic in vitro inhibition toward SKOV3 and A2780-E80 cells when combined with cisplatin. In vivo studies with subcutaneous SKOV3 EOC xenografts in SCID mice confirmed significant antitumor efficacy of AGF347. Collectively, our studies demonstrate a unique metabolic vulnerability in EOC involving mitochondrial and cytosolic C1 metabolism that offers a promising new platform for therapy.

3.
Biochem Pharmacol ; 220: 115981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081370

RESUMO

Venetoclax (VEN), in combination with low dose cytarabine (AraC) or a hypomethylating agent, is FDA approved to treat acute myeloid leukemia (AML) in patients who are over the age of 75 or cannot tolerate standard chemotherapy. Despite high response rates to these therapies, most patients succumb to the disease due to relapse and/or drug resistance, providing an unmet clinical need for novel therapies to improve AML patient survival. ME-344 is a potent isoflavone with demonstrated inhibitory activity toward oxidative phosphorylation (OXPHOS) and clinical activity in solid tumors. Given that OXPHOS inhibition enhances VEN antileukemic activity against AML, we hypothesized that ME-344 could enhance the anti-AML activity of VEN. Here we report that ME-344 enhanced VEN to target AML cell lines and primary patient samples while sparing normal hematopoietic cells. Cooperative suppression of OXPHOS was detected in a subset of AML cell lines and primary patient samples. Metabolomics analysis revealed a significant reduction of purine biosynthesis metabolites by ME-344. Further, lometrexol, a purine biosynthesis inhibitor, synergistically enhanced VEN-induced apoptosis in AML cell lines. Interestingly, AML cells with acquired AraC resistance showed significantly increased purine biosynthesis metabolites and sensitivities to ME-344. Furthermore, synergy between ME-344 and VEN was preserved in these AraC-resistant AML cells. In vivo studies revealed significantly prolonged survival upon combination therapy of ME-344 and VEN in NSGS mice bearing parental or AraC-resistant MV4-11 leukemia compared to the vehicle control. This study demonstrates that ME-344 enhances VEN antileukemic activity against preclinical models of AML by suppressing OXPHOS and/or purine biosynthesis.


Assuntos
Isoflavonas , Leucemia Mieloide Aguda , Sulfonamidas , Humanos , Animais , Camundongos , Fosforilação Oxidativa , Leucemia Mieloide Aguda/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes , Isoflavonas/farmacologia , Purinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
4.
ACS Med Chem Lett ; 14(12): 1682-1691, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116433

RESUMO

Pemetrexed and related 5-substituted pyrrolo[2,3-d]pyrimidine antifolates are substrates for the ubiquitously expressed reduced folate carrier (RFC), and the proton-coupled folate transporter (PCFT) and folate receptors (FRs) which are more tumor-selective. A long-standing goal has been to discover tumor-targeted therapeutics that draw from one-carbon metabolic vulnerabilities of cancer cells and are selective for transport by FRs and PCFT over RFC. We discovered that a methyl group at the 6-position of the pyrrole ring in the bicyclic scaffold of 5-substituted 2-amino-4-oxo-pyrrolo[2,3-d]pyrimidine antifolates 1-4 (including pemetrexed) abolished transport by RFC with modest impacts on FRs or PCFT. From molecular modeling, loss of RFC transport involves steric repulsion in the scaffold binding site due to the 6-methyl moiety. 6-Methyl substitution preserved antiproliferative activities toward human tumor cells (KB, IGROV3) with selectivity over IOSE 7576 normal ovary cells and inhibition of de novo purine biosynthesis. Thus, adding a 6-methyl moiety to 5-substituted pyrrolo[2,3-d]pyrimidine antifolates affords tumor transport selectivity while preserving antitumor efficacy.

5.
J Med Chem ; 66(16): 11294-11323, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37582241

RESUMO

Multitargeted agents provide tumor selectivity with reduced drug resistance and dose-limiting toxicities. We previously described the multitargeted 6-substituted pyrrolo[3,2-d]pyrimidine antifolate 1 with activity against early- and late-stage pancreatic tumors with limited tumor selectivity. Structure-based design with our human serine hydroxymethyl transferase (SHMT) 2 and glycinamide ribonucleotide formyltransferase (GARFTase) structures, and published X-ray crystal structures of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC), SHMT1, and folate receptor (FR) α and ß afforded 11 analogues. Multitargeted inhibition and selective tumor transport were designed by providing promiscuous conformational flexibility in the molecules. Metabolite rescue identified mitochondrial C1 metabolism along with de novo purine biosynthesis as the targeted pathways. We identified analogues with tumor-selective transport via FRs and increased SHMT2, SHMT1, and GARFTase inhibition (28-, 21-, and 11-fold, respectively) compared to 1. These multitargeted agents represent an exciting new structural motif for targeted cancer therapy with substantial advantages of selectivity and potency over clinically used antifolates.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Hidroximetil e Formil Transferases , Neoplasias , Humanos , Antineoplásicos/química , Carbono , Citosol , Antagonistas do Ácido Fólico/química , Hidroximetil e Formil Transferases/metabolismo , Mitocôndrias , Neoplasias/metabolismo
6.
Res Sq ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162954

RESUMO

Venetoclax (VEN), in combination with low dose cytarabine (AraC) or a hypomethylating agent, is FDA approved to treat acute myeloid leukemia (AML) in patients who are over the age of 75 or cannot tolerate standard chemotherapy. Despite high response rates to these combination therapies, most patients succumb to the disease due to relapse and/or drug resistance, providing an unmet clinical need for novel therapies to improve AML patient survival. ME-344 is a potent isoflavone with demonstrated inhibitory activity toward oxidative phosphorylation (OXPHOS) and clinical activity in solid tumors. Given that OXPHOS inhibition enhances VEN antileukemic activity against AML, we hypothesized that ME-344 could enhance the anti-AML activity of VEN. Here we report that ME-344 synergized with VEN to target AML cell lines and primary patient samples while sparing normal hematopoietic cells. Cooperative suppression of OXPHOS was detected in a subset of AML cell lines and primary patient samples. Metabolomics analysis revealed a significant reduction of purine biosynthesis metabolites by ME-344. Further, lometrexol, an inhibitor of purine biosynthesis, synergistically enhanced VEN-induced apoptosis in AML cell lines. Interestingly, AML cells with acquired resistance to AraC showed significantly increased purine biosynthesis metabolites and sensitivities to ME-344. Furthermore, synergy between ME-344 and VEN was preserved in these AraC-resistant AML cells. These results translated into significantly prolonged survival upon combination of ME-344 and VEN in NSGS mice bearing parental or AraC-resistant MV4-11 leukemia. This study demonstrates that ME-344 enhances VEN antileukemic activity against preclinical models of AML by suppressing OXPHOS and/or purine biosynthesis.

7.
ACS Pharmacol Transl Sci ; 6(5): 748-770, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37200803

RESUMO

Multitargeted agents with tumor selectivity result in reduced drug resistance and dose-limiting toxicities. We report 6-substituted thieno[2,3-d]pyrimidine compounds (3-9) with pyridine (3, 4), fluorine-substituted pyridine (5), phenyl (6, 7), and thiophene side chains (8, 9), for comparison with unsubstituted phenyl (1, 2) and thiophene side chain (10, 11) containing thieno[2,3-d]pyrimidine compounds. Compounds 3-9 inhibited proliferation of Chinese hamster ovary cells (CHO) expressing folate receptors (FRs) α or ß but not the reduced folate carrier (RFC); modest inhibition of CHO cells expressing the proton-coupled folate transporter (PCFT) by 4, 5, 6, and 9 was observed. Replacement of the side-chain 1',4'-phenyl ring with 2',5'-pyridyl, or 2',5'-pyridyl with a fluorine insertion ortho to l-glutamate resulted in increased potency toward FR-expressing CHO cells. Toward KB tumor cells, 4-9 were highly active (IC50's from 2.11 to 7.19 nM). By metabolite rescue in KB cells and in vitro enzyme assays, de novo purine biosynthesis was identified as a targeted pathway (at 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFTase) and glycinamide ribonucleotide formyltransferase (GARFTase)). Compound 9 was 17- to 882-fold more potent than previously reported compounds 2, 10, and 11 against GARFTase. By targeted metabolomics and metabolite rescue, 1, 2, and 6 also inhibited mitochondrial serine hydroxymethyl transferase 2 (SHMT2); enzyme assays confirmed inhibition of SHMT2. X-ray crystallographic structures were obtained for 4, 5, 9, and 10 with human GARFTase. This series affords an exciting new structural platform for potent multitargeted antitumor agents with FR transport selectivity.

9.
Nature ; 612(7938): 39-41, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36418878

Assuntos
Ácido Fólico
10.
Expert Opin Drug Metab Toxicol ; 18(10): 695-706, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36239195

RESUMO

INTRODUCTION: The proton-coupled folate transporter (PCFT; SLC46A1) was discovered in 2006 as the principal mechanism by which folates are absorbed in the intestine and the causal basis for hereditary folate malabsorption (HFM). In 2011, it was found that PCFT is highly expressed in many tumors. This stimulated interest in using PCFT for cytotoxic drug targeting, taking advantage of the substantial levels of PCFT transport and acidic pH conditions commonly associated with tumors. AREAS COVERED: We summarize the literature from 2006 to 2022 that explores the role of PCFT in the intestinal absorption of dietary folates and its role in HFM and as a transporter of folates and antifolates such as pemetrexed (Alimta) in relation to cancer. We provide the rationale for the discovery of a new generation of targeted pyrrolo[2,3-d]pyrimidine antifolates with selective PCFT transport and inhibitory activity toward de novo purine biosynthesis in solid tumors. We summarize the benefits of this approach to cancer therapy and exciting new developments in the structural biology of PCFT and its potential to foster refinement of active structures of PCFT-targeted anti-cancer drugs. EXPERT OPINION: We summarize the promising future and potential challenges of implementing PCFT-targeted therapeutics for HFM and a variety of cancers.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Neoplasias , Humanos , Transportador de Folato Acoplado a Próton/química , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico , Pemetrexede/farmacologia , Pemetrexede/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ácido Fólico/uso terapêutico , Neoplasias/tratamento farmacológico , Biologia
11.
Sci Rep ; 12(1): 11346, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790779

RESUMO

Novel therapies are urgently needed for epithelial ovarian cancer (EOC), the most lethal gynecologic malignancy. In addition, therapies that target unique vulnerabilities in the tumor microenvironment (TME) of EOC have largely been unrealized. One strategy to achieve selective drug delivery for EOC therapy involves use of targeted antifolates via their uptake by folate receptor (FR) proteins, resulting in inhibition of essential one-carbon (C1) metabolic pathways. FRα is highly expressed in EOCs, along with the proton-coupled folate transporter (PCFT); FRß is expressed on activated macrophages, a major infiltrating immune population in EOC. Thus, there is great potential for targeting both the tumor and the TME with agents delivered via selective transport by FRs and PCFT. In this report, we investigated the therapeutic potential of a novel cytosolic C1 6-substituted pyrrolo[2,3-d]pyrimidine inhibitor AGF94, with selectivity for uptake by FRs and PCFT and inhibition of de novo purine nucleotide biosynthesis, against a syngeneic model of ovarian cancer (BR-Luc) which recapitulates high-grade serous ovarian cancer in patients. In vitro activity of AGF94 was extended in vivo against orthotopic BR-Luc tumors. With late-stage subcutaneous BR-Luc xenografts, AGF94 treatment resulted in substantial anti-tumor efficacy, accompanied by significantly decreased M2-like FRß-expressing macrophages and increased CD3+ T cells, whereas CD4+ and CD8+ T cells were unaffected. Our studies demonstrate potent anti-tumor efficacy of AGF94 in the therapy of EOC in the context of an intact immune system, and provide a framework for targeting the immunosuppressive TME as an essential component of therapy.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Neoplasias Ovarianas , Animais , Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Feminino , Antagonistas do Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico , Humanos , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Pirimidinas/metabolismo , Microambiente Tumoral
12.
Proteomes ; 10(2)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35645376

RESUMO

Localization of organelle proteins by isotope tagging (LOPIT) maps are a coordinate-directed representation of proteome data that can aid in biological interpretation. Analysis of organellar association for proteins as displayed using LOPIT is evaluated and interpreted for two types of proteomic data sets. First, test and control group protein abundances and fold change data obtained in a proximity labeling experiment are plotted on a LOPIT map to evaluate the likelihood of true protein interactions. Selection of true positives based on co-localization of proteins in the organellar space is shown to be consistent with carboxylase enrichment which serves as a positive control for biotinylation in streptavidin affinity selected proteome data sets. The mapping in organellar space facilitates discrimination between the test and control groups and aids in identification of proteins of interest. The same representation of proteins in organellar space is used in the analysis of extracellular vesicle proteomes for which protein abundance and fold change data are evaluated. Vesicular protein organellar localization patterns provide information about the subcellular origin of the proteins in the samples which are isolates from the extracellular milieu. The organellar localization patterns are indicative of the provenance of the vesicular proteome origin and allow discrimination between proteomes prepared using different enrichment methods. The patterns in LOPIT displays are easy to understand and compare which aids in the biological interpretation of proteome data.

13.
FASEB J ; 36(2): e22164, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35061292

RESUMO

The human proton-coupled folate transporter (PCFT; SLC46A1) or hPCFT was identified in 2006 as the principal folate transporter involved in the intestinal absorption of dietary folates. A rare autosomal recessive hereditary folate malabsorption syndrome is attributable to human SLC46A1 variants. The recognition that hPCFT was highly expressed in many tumors stimulated substantial interest in its potential for cytotoxic drug targeting, taking advantage of its high-level transport activity under acidic pH conditions that characterize many tumors and its modest expression in most normal tissues. To better understand the basis for variations in hPCFT levels between tissues including human tumors, studies have examined the transcriptional regulation of hPCFT including the roles of CpG hypermethylation and critical transcription factors and cis elements. Additional focus involved identifying key structural and functional determinants of hPCFT transport that, combined with homology models based on structural homologies to the bacterial transporters GlpT and LacY, have enabled new structural and mechanistic insights. Recently, cryo-electron microscopy structures of chicken PCFT in a substrate-free state and in complex with the antifolate pemetrexed were reported, providing further structural insights into determinants of (anti)folate recognition and the mechanism of pH-regulated (anti)folate transport by PCFT. Like many major facilitator proteins, hPCFT exists as a homo-oligomer, and evidence suggests that homo-oligomerization of hPCFT monomeric proteins may be important for its intracellular trafficking and/or transport function. Better understanding of the structure, function and regulation of hPCFT should facilitate the rational development of new therapeutic strategies for conditions associated with folate deficiency, as well as cancer.


Assuntos
Ácido Fólico/metabolismo , Transportador de Folato Acoplado a Próton/metabolismo , Animais , Antagonistas do Ácido Fólico/metabolismo , Humanos , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia
14.
Cancer Metastasis Rev ; 41(1): 17-31, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34741716

RESUMO

Metabolic reprogramming is recognized as a hallmark of cancer. Lipids are the essential biomolecules required for membrane biosynthesis, energy storage, and cell signaling. Altered lipid metabolism allows tumor cells to survive in the nutrient-deprived environment. However, lipid metabolism remodeling in renal cell carcinoma (RCC) has not received the same attention as in other cancers. RCC, the most common type of kidney cancer, is associated with almost 15,000 death in the USA annually. Being refractory to conventional chemotherapy agents and limited available targeted therapy options has made the treatment of metastatic RCC very challenging. In this article, we review recent findings that support the importance of synthesis and metabolism of cholesterol, free fatty acids (FFAs), and polyunsaturated fatty acids (PUFAs) in the carcinogenesis and biology of RCC. Delineating the detailed mechanisms underlying lipid reprogramming can help to better understand the pathophysiology of RCC and to design novel therapeutic strategies targeting this malignancy.


Assuntos
Antineoplásicos , Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/patologia , Ácidos Graxos Insaturados/metabolismo , Feminino , Humanos , Neoplasias Renais/patologia , Metabolismo dos Lipídeos , Masculino
15.
Sci Rep ; 11(1): 6389, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737637

RESUMO

There are three major folate uptake systems in human tissues and tumors, including the reduced folate carrier (RFC), folate receptors (FRs) and proton-coupled folate transporter (PCFT). We studied the functional interrelationships among these systems for the novel tumor-targeted antifolates AGF94 (transported by PCFT and FRs but not RFC) and AGF102 (selective for FRs) versus the classic antifolates pemetrexed, methotrexate and PT523 (variously transported by FRs, PCFT and RFC). We engineered HeLa cell models to express FRα or RFC under control of a tetracycline-inducible promoter with or without constitutive PCFT. We showed that cellular accumulations of extracellular folates were determined by the type and levels of the major folate transporters, with PCFT and RFC prevailing over FRα, depending on expression levels and pH. Based on patterns of cell proliferation in the presence of the inhibitors, we established transport redundancy for RFC and PCFT in pemetrexed uptake, and for PCFT and FRα in AGF94 uptake; uptake by PCFT predominated for pemetrexed and FRα for AGF94. For methotrexate and PT523, uptake by RFC predominated even in the presence of PCFT or FRα. For both classic (methotrexate, PT523) and FRα-targeted (AGF102) antifolates, anti-proliferative activities were antagonized by PCFT, likely due to its robust activity in mediating folate accumulation. Collectively, our findings describe a previously unrecognized interplay among the major folate transport systems that depends on transporter levels and extracellular pH, and that determines their contributions to the uptake and anti-tumor efficacies of targeted and untargeted antifolates.


Assuntos
Receptor 1 de Folato/genética , Ácido Fólico/metabolismo , Neoplasias/tratamento farmacológico , Transportador de Folato Acoplado a Próton/genética , Proteína Carregadora de Folato Reduzido/genética , Transporte Biológico/genética , Proliferação de Células/efeitos dos fármacos , Receptor 1 de Folato/metabolismo , Ácido Fólico/genética , Antagonistas do Ácido Fólico/farmacologia , Células HeLa , Humanos , Metotrexato/farmacologia , Neoplasias/genética , Neoplasias/metabolismo , Ornitina/análogos & derivados , Ornitina/farmacologia , Pemetrexede/farmacologia , Transportador de Folato Acoplado a Próton/metabolismo , Pterinas/farmacologia , Proteína Carregadora de Folato Reduzido/metabolismo
16.
Bioorg Med Chem ; 37: 116093, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773393

RESUMO

We discovered 6-substituted thieno[2,3-d]pyrimidine compounds (3-9) with 3-4 bridge carbons and side-chain thiophene or furan rings for dual targeting one-carbon (C1) metabolism in folate receptor- (FR) expressing cancers. Synthesis involved nine steps starting from the bromo-aryl carboxylate. From patterns of growth inhibition toward Chinese hamster ovary cells expressing FRα or FRß, the proton-coupled folate transporter or reduced folate carrier, specificity for uptake by FRs was confirmed. Anti-proliferative activities were demonstrated toward FRα-expressing KB tumor cells and NCI-IGROV1 ovarian cancer cells. Inhibition of de novo purine biosynthesis at both 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase and glycinamide ribonucleotide formyltransferase (GARFTase) was confirmed by metabolite rescue, metabolomics and enzyme assays. X-ray crystallographic structures were obtained with compounds 3-5 and human GARFTase. Our studies identify first-in-class C1 inhibitors with selective uptake by FRs and dual inhibition of enzyme targets in de novo purine biosynthesis, resulting in anti-tumor activity. This series affords an exciting new platform for selective multi-targeted anti-tumor agents.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Fosforribosilaminoimidazolcarboxamida Formiltransferase/antagonistas & inibidores , Fosforribosilglicinamido Formiltransferase/antagonistas & inibidores , Pirimidinas/farmacologia , Tiofenos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Células CHO , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cricetulus , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Receptores de Folato com Âncoras de GPI/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Fosforribosilglicinamido Formiltransferase/metabolismo , Ligação Proteica , Pirimidinas/síntese química , Pirimidinas/metabolismo , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/metabolismo
17.
Cancers (Basel) ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008360

RESUMO

New therapies are urgently needed for epithelial ovarian cancer (EOC), the most lethal gynecologic malignancy. To identify new approaches for targeting EOC, metabolic vulnerabilities must be discovered and strategies for the selective delivery of therapeutic agents must be established. Folate receptor (FR) α and the proton-coupled folate transporter (PCFT) are expressed in the majority of EOCs. FRß is expressed on tumor-associated macrophages, a major infiltrating immune population in EOC. One-carbon (C1) metabolism is partitioned between the cytosol and mitochondria and is important for the synthesis of nucleotides, amino acids, glutathione, and other critical metabolites. Novel inhibitors are being developed with the potential for therapeutic targeting of tumors via FRs and the PCFT, as well as for inhibiting C1 metabolism. In this review, we summarize these exciting new developments in targeted therapies for both tumors and the tumor microenvironment in EOC.

18.
Mol Cancer Ther ; 19(11): 2245-2255, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32879053

RESUMO

One-carbon (1C) metabolism encompasses folate-mediated 1C transfer reactions and related processes, including nucleotide and amino acid biosynthesis, antioxidant regeneration, and epigenetic regulation. 1C pathways are compartmentalized in the cytosol, mitochondria, and nucleus. 1C metabolism in the cytosol has been an important therapeutic target for cancer since the inception of modern chemotherapy, and "antifolates" targeting cytosolic 1C pathways continue to be a mainstay of the chemotherapy armamentarium for cancer. Recent insights into the complexities of 1C metabolism in cancer cells, including the critical role of the mitochondrial 1C pathway as a source of 1C units, glycine, reducing equivalents, and ATP, have spurred the discovery of novel compounds that target these reactions, with particular focus on 5,10-methylene tetrahydrofolate dehydrogenase 2 and serine hydroxymethyltransferase 2. In this review, we discuss key aspects of 1C metabolism, with emphasis on the importance of mitochondrial 1C metabolism to metabolic homeostasis, its relationship with the oncogenic phenotype, and its therapeutic potential for cancer.


Assuntos
Antineoplásicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Neoplasias/metabolismo , Aminoidrolases/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Biomarcadores , Carbono/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicina Hidroximetiltransferase/antagonistas & inibidores , Humanos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/antagonistas & inibidores , Terapia de Alvo Molecular/métodos , Enzimas Multifuncionais/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/patologia , Serina/biossíntese
19.
Bioorg Med Chem ; 28(12): 115544, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32503687

RESUMO

Tumor-targeted 6-substituted pyrrolo[2,3-d]pyrimidine benzoyl compounds based on 2 were isosterically modified at the 4-carbon bridge by replacing the vicinal (C11) carbon by heteroatoms N (4), O (5) or S (6), or with an N-substituted formyl (7), trifluoroacetyl (8) or acetyl (9). Replacement with sulfur (6) afforded the most potent KB tumor cell inhibitor, ~6-fold better than the parent 2. In addition, 6 retained tumor transport selectivity via folate receptor (FR) α and -ß over the ubiquitous reduced folate carrier (RFC). FRα-mediated cell inhibition for 6 was generally equivalent to 2, while the FRß-mediated activity was improved by 16-fold over 2. N (4) and O (5) substitutions afforded similar tumor cell inhibitions as 2, with selectivity for FRα and -ß over RFC. The N-substituted analogs 7-9 also preserved transport selectivity for FRα and -ß over RFC. For FRα-expressing CHO cells, potencies were in the order of 8 > 7 > 9. Whereas 8 and 9 showed similar results with FRß-expressing CHO cells, 7 was ~16-fold more active than 2. By nucleoside rescue experiments, all the compounds inhibited de novo purine biosynthesis, likely at the step catalyzed by glycinamide ribonucleotide formyltransferase. Thus, heteroatom replacements of the CH2 in the bridge of 2 afford analogs with increased tumor cell inhibition that could provide advantages over 2, as well as tumor transport selectivity over clinically used antifolates including methotrexate and pemetrexed.


Assuntos
Antineoplásicos/síntese química , Desenho de Fármacos , Receptor 1 de Folato/metabolismo , Receptor 2 de Folato/metabolismo , Ácido Fólico/metabolismo , Pirimidinas/química , Pirróis/química , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Células CHO , Domínio Catalítico , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Receptor 1 de Folato/química , Receptor 1 de Folato/genética , Receptor 2 de Folato/química , Receptor 2 de Folato/genética , Ácido Fólico/química , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Humanos , Simulação de Acoplamento Molecular , Fosforribosilglicinamido Formiltransferase/química , Fosforribosilglicinamido Formiltransferase/metabolismo , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Pirróis/metabolismo , Pirróis/farmacologia , Relação Estrutura-Atividade
20.
Br J Cancer ; 123(4): 644-656, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32493992

RESUMO

BACKGROUND: Expression of proton-coupled folate transporter (PCFT) is associated with survival of mesothelioma patients treated with pemetrexed, and is reduced by hypoxia, prompting studies to elucidate their correlation. METHODS: Modulation of glycolytic gene expression was evaluated by PCR arrays in tumour cells and primary cultures growing under hypoxia, in spheroids and after PCFT silencing. Inhibitors of lactate dehydrogenase (LDH-A) were tested in vitro and in vivo. LDH-A expression was determined in tissue microarrays of radically resected malignant pleural mesothelioma (MPM, N = 33) and diffuse peritoneal mesothelioma (DMPM, N = 56) patients. RESULTS: Overexpression of hypoxia marker CAIX was associated with low PCFT expression and decreased MPM cell growth inhibition by pemetrexed. Through integration of PCR arrays in hypoxic cells and spheroids and following PCFT silencing, we identified the upregulation of LDH-A, which correlated with shorter survival of MPM and DMPM patients. Novel LDH-A inhibitors enhanced spheroid disintegration and displayed synergistic effects with pemetrexed in MPM and gemcitabine in DMPM cells. Studies with bioluminescent hypoxic orthotopic and subcutaneous DMPM athymic-mice models revealed the marked antitumour activity of the LDH-A inhibitor NHI-Glc-2, alone or combined with gemcitabine. CONCLUSIONS: This study provides novel insights into hypoxia/PCFT-dependent chemoresistance, unravelling the potential prognostic value of LDH-A, and demonstrating the preclinical activity of LDH-A inhibitors.


Assuntos
Antígenos de Neoplasias/genética , Anidrase Carbônica IX/genética , Inibidores Enzimáticos/administração & dosagem , L-Lactato Desidrogenase/genética , Mesotelioma Maligno/tratamento farmacológico , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Pleurais/tratamento farmacológico , Transportador de Folato Acoplado a Próton/genética , Animais , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Técnicas de Cultura de Células , Hipóxia Celular , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mesotelioma Maligno/genética , Mesotelioma Maligno/metabolismo , Camundongos , Pemetrexede/administração & dosagem , Pemetrexede/farmacologia , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Neoplasias Pleurais/genética , Neoplasias Pleurais/metabolismo , Transportador de Folato Acoplado a Próton/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...