Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Regul Homeost Agents ; 35(2): 441-456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33940790

RESUMO

Good fundamentals of posture and balance are essential for the efficient performance of both simple daily tasks and more complex movement patterns. In particular, postural balance is the ability to keep the body in equilibrium and to regain balance after the shift of body segments: postural control mechanisms of integration of the visual, vestibular and foot afferential channels contribute to this. This document provides recommendations based on scientific evidence, clinical practice, and consensus between experts concerning the prevention, diagnosis, and treatment of postural dysfunction at the three stages of life as the developmental age, adult age, and old age > 65 years and follows the "National Guidelines on Classification and Measuring of Posture and its Dysfunctions" per the Italian Ministry of Health (December 2017). The paper answers four main questions: i) "Which measures can be adopted to prevent postural dysfunctions?" ii) "What can we do in order to make a correct diagnosis of postural dysfunction?" iii) "What are the correct treatment programs for postural dysfunctions?" iv) Which professional competencies and experiences are useful for preventing, diagnosing and treating postural dysfunctions? By the Consensus of the Experts and the scientific evidence, emerge that the approach to postural dysfunctions requires a multidisciplinary and interdisciplinary team. Furthermore, rehabilitation treatment interventions must be specific to the age groups that have been indicated, to consider the integration of the main systems and subsystems of postural control that change with age.


Assuntos
Equilíbrio Postural , Postura , Consenso ,
2.
PLoS One ; 10(12): e0143693, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26637132

RESUMO

The purpose of this study was to assess properties of vergence and saccade eye movements as well as posture in quiet stance, and the effects of thin plantar inserts upon postural and oculomotor control. The performances of 36 young healthy subjects were recorded by a force platform and an eye tracker in three testing conditions: without plantar stimulation, with a 3 millimetre-thick plantar insert, either a Medial or a Lateral Arch Support (MAS/LAS). The results showed a decrease of the Surface and Variance of Speed and a more posterior position of the CoP with either stimulation compared with the control condition. The fractal analysis showed a decrease with MAS. Wavelet analysis in the time-frequency domain revealed an increase in the Cancelling Time of the low frequency band with MAS. These results suggest a better stability for a lower energy cost. Concerning eye movements, the inserts influenced only vergence (not saccades): MAS caused an increase of the phasic amplitude of divergence, and conversely a decrease of the tonic amplitude. In contrast, LAS caused an increase of the tonic amplitude of convergence. Thus, MAS renders divergence less visually driven, while LAS renders convergence more visually driven. We conclude that the CNS uses the podal signal for both postural and vergence control via specific mechanisms. Plantar inserts have an influence upon posture and vergence movements in a different way according to the part of the foot sole being stimulated. These results can be useful to clinicians interested in foot or eye.


Assuntos
Movimentos Oculares/fisiologia , Órtoses do Pé , Equilíbrio Postural/fisiologia , Postura/fisiologia , Adulto , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...